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VARIATIONAL PROPERTIES,
PERTURBATION EXPANSIONS,
AND MEAN FIELD THEORY

20-1 THE BOGOLIUBOV VARIATIONAL THEOREM

To calculate the fundamental equation for a particular system we must
first evaluate the permissible energy levels of the system and then, given
those energies, we must sum the partition sum. Neither of these steps is
simple, except for a few “textbook models.” In such models, several of
which we have studied in preceding chapters, the energy eigenvalues
follow a simple sequence and the partition sum is an infinite series that
can be summed analytically. But for most systems both the enumeration
of the energy eigenvalues and the summation of the partition sum pose
immense computational burdens. Approximation techniques are required
to make the calculations practical. In addition these approximation tech-
niques provide important heuristic insights to complex systems.

The strategy followed in the approximation techniques to be described
is first to identify a soluble model that is somewhat similar to the model of
interest, and then to apply a method of controlled corrections to calculate
the effect of the difference in the two models. Such an approach is a
statistical “perturbation method.”

Because perturbation methods rest upon the existence of a library of
soluble models, there is great stress in the statistical mechanical literature
on the invention of new soluble models. Few of these have direct physical
relevance, as they generally are devised to exploit some ingenious
mathematical trick of solution rather than to mirror real systems (thereby
giving rise to the rather abstract flavor of some statistical mechanical
literature).

The first step in the approximation strategy is to identify a practical
criterion for the choice of a soluble model with which to approximate a
given system. That criterion is most powerfully formulated in terms of the
Bogoliubov variational theorem.
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Consider a system with a Hamiltonian 5#, and a soluble model system
with a Hamiltonian 5. Let the difference be 5, so that J#= 5, + #,.
It is then convenient to define

H#(N) = 5, + K, (20.1)

where A is a parameter inserted for analytic convenience. By permitting A

to vary from zero to unity we can smoothly bridge the transition from the

soluble model system (£} to the system of interest; J£(1) = 5, + H,.
The Helmbholtz potential corresponding to s#(A) is F(A), where

—BF(A\) =1n Y e PEM = Intre A¥M (20.2)
J

Here the symbol tre #*®™ (to be read as the “trace” of e A*¥M) s
defined by the second equality; the trace of any quantity is the sum of its
quantum eigenvalues. We use the notation “tr” simply as a convenience.

We now study the dependence of the Helmholtz potential on A. The
first derivative is!

dF(N)  trote=POmon)

dA peTE s e S ek
and the second derivative is
dF _ | TropZe Paierm) ( tr e~ B +AA) )2] Gl
A2 tr e~ BOHB+AA) tr e~ Bt +HAHA)
= =Bl - (#)?] (20.5)
= —B(H, - () (20.6)

where the averages are taken with respect to the canonical weighting
factor e ™A™, The operational meaning of these weighted averages will
be clarified by a specific example to follow.

An immediate and fateful consequence of equation 20.6 is that d*F/d\?
is negative (or zero) for all A

d*F
— <0 for all A 20.7
“5<0 (forallA) (207

'In the quantum mechanical context the operators ., and #, are here assumed to commute.
The result is independent of this assumption. For the noncommutative case, and for an elegant general
discussion see R. Feynman, Statistical Mechanics—A Set of Lectures (W. A. Benjamin, Inc., Reading,
Massachusetts, 1972).
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Consequently a plot of F(A) as a function of A is everywhere concave. It
follows that F(A) lies below the straight line tangent to F(A) at A = 0;

F(A) < F(0) + A(dF/d\)_, (20.8)
and specifically, taking A = 1
F < Fy + (), (20.9)

The quantity (), is as defined in equation 20.3, but with A = 0; it is
the average value of 5, in the soluble model system. Equation 20.9 is the
Bogoliubov inequality. It states that the Helmholiz potential of a system
with Hamiltonian 5= 3, + 5, is less than or equal to the “unperturbed
Helmholtz potential (corresponding to J#,) plus the average value of the
“perturbation” , as calculated in the unperturbed (or soluble model)
system.

Because the quantity on the right of equation 20.9 is an upper bound to
the Helmholtz potential of the (“perturbed”) system, it clearly is desirable
that this bound be as small as possible. Consequently any adjustable
parameters in the unperturbed system are best chosen so as to minimize the
quantity F, + (3#)),.

This is the criterion for the choice of the “best” soluble model system.
Then F; is the Helmholtz potential of the optimum model system, and
(H#,), is the leading correction to this Helmholtz potential.

The meaning and the application of this theorem are best illustrated by
a specific example, to which we shall turn momentarily. However we first
recast the Bogoliubov inequality in an alternative form that provides an
important insight. If we write F;, the Helmholtz potential of the unper-
turbed system, explicitly as

By =(H)o — TS, (20.10)
then equation 20.9 becomes

F < ()0 + (K)o — TS, (20.11)
or

e e £ (20.12)

That is, the Helmholtz potential of a system with Hamiltonian 7 = J, +
is less than or equal to the full energy 3¢ averaged over the state probabilities
of the unperturbed system, minus the product of T and the entropy of the
unperturbed system.
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Example 1

A particle of mass m is constrained to move in one dimension in a quartic
potential of the form V(x) = D(x/a)*, where D > 0 and where a is a measure of
the linear extension of the potential. The system of interest is composed of N
such particles in thermal contact with a reservoir of temperature T. An extensive
parameter of the system is defined by X = Na, and the associated intensive
parameter is denoted by P. Calculate the equations of state U = U(T, X, N) and
P = P(T, X, N), and the heat capacity c,(T, X, N).

To solve this problem by the standard algorithm would require first a quantum
mechanical calculation of the allowed energies of a particle in a quartic potential,
and then summation of the partition sum. Neither of these calculations is
analytically tractable. We avoid these difficulties by seeking an approximate
solution. In particular we inquire as to the best quadratic potential (i.e., the best
simple harmonic oscillator model) with which to approximate the system, and we
then assess the leading correction to account for the difference in the two models.

The quadratic potential that, together with the kinetic energy, defines the
“unperturbed Hamiltonian” is

Vo(x) = dmawix? (2)
where wj is an as-yet-unspecified constant. Then the “perturbing potential,” or
the difference between the true Hamiltonian and that of the soluble model system,
is

x\¢ 1,
Jfl =i D(;) I Emwox (b)
The Helmholtz potential of the harmonic oscillator model system is (recall
equations 16.22 to 16.24)?

Fy= —NkyTlnzy = NB~'In(efho/? — o= Bhuo/2) (c)
and the Bogoliubov inequality states that

F < NB lin (efhoo/2 — g=Fhoo/2)

4 SEING N
+ND<(;)> —(j)mwg<x2>0 (d)
0
Before we can draw conclusions from this result we must evaluate the second and
third terms. It is an elementary result of mechanics (the “ virial theorem”) that the
value of the potential energy (3mwlx?) in the nth state of a harmonic oscillator is

one half the total energy, so that

(%mngz)nthstale = %(n it %)h“’o (e)

2But note that the zero of energy has been shifted by /w;/2, the so-called zero point energy. The
allowed energies are (n + 1)hwy.
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and a similar quantum mechanical calculation gives

3h*

2,2
2mewg

AT ( (2 +n+3) 0

With the values of these quantities in the nth state we must now average over all
states n. Averaging equation (e) in the unperturbed system

Tnesponcily w1 l] T P
<2mw0x >0— 2[(n> + 5 hwo— 2U0— 4hw0m (g)
and we also find
D, , D 3K® [ 5 U]
= (xhy == n?y + —
a“< 20 at 2m2w(2,< ! he,

D 3R | effeot] | efhen 4
a* 2m%w? 1)

(efhoo — 1)2  2(efhuo —

3Dh? [ ePhwo 4 1\?
( ) (h)

da*mwl \ ePheo — 1

Inserting these last two results (equations g and h) into the Bogoliubov inequality
(equation d)

F < ].\vf,B_lln(em“"’o/2 i e—Bhwo/z)

3NDA? (PP 117 1o, efheo ] 0
4a*m2wi\ ePheo — 1 270 ey '

The first term is the Helmholtz potential of the unperturbed harmonic oscilla-
tor system, and the two remaining terms are the leading correction. The inequality
states that the sum of all higher-order corrections would be positive, so that the
right-hand side of equation (i) is an upper bound to the Helmholtz potential.

The frequency w, of the harmonic oscillator system has not yet been chosen.
Clearly the best approximation is obtained by making the upper bound on F as
small as possible. Thus we choose Wy S0 as to munimize the right-hand side of
equation i, which then becomes the best available approximation to the Helmholtz
potential of the system. Denote the value of wy that minimizes F by &, (a function
of T, X (= Na), and N). Then w, in equation (i) can be replaced by @, and the
“less than or equal” sign (<) can be replaced by an “approximately equal” sign
(=). So interpreted, equation (i) is the (approximate) fundamental equation of the
system.
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The mechanical equation of state is, then,

P_I(BF) _1(8F
T N T,N

B ik (50| L S0 o s 1
da N\da/)grne, N\3d, rial 9a )R

At this point the algebra becomes cumbersome, though straightforward in princi-
ple. The remaining quantities sought for can be found in similar form. Instead we
turn our attention to a simpler version of the same problem.

Example 2

We repeat the preceding Example, but we consider the case in which the
coefficient D/a* is small (in a sense to be made more quantitative later),
permitting the use of classical statistics. Furthermore we now choose a square-well
potential as the unperturbed potential

0 '1I‘—£¢Jc<£

2 2
VO(X)= L
o if |x|> =

2

The optimum value of L is to be determined by the Bogoliubov criterion.
The unperturbed Helmholtz potential is determined by

e BFo = tre—B% = f‘/%e—ﬁlﬂﬂrﬁwu)l

1 rL2 0 2
= — dx d xe_Bpx/zm

= %(2vrkaT)l/ ’L

We have here used classical statistics (as in Sections 16.8 and 16.9), tentatively
assuming that L and T are each sufficiently large that k ;T is large compared to
the energy differences between quantum states.

The quantity (5, ), is, then,

tr [ Da=“x* — Vy(x)]e A%
—B*,

(H1)o =
tre

Furthermore V,(x) = 0 for |x| < L/2, whereas e ~#% = 0 for |x| > L/2, so that

the term involving ¥V,(x) vanishes. Then

D D L2 D (L\*
Hy)o= —(xHg= — x4dx = —-(—)
< 1)0 a4< )0 a4L —Lp2 80\ 4
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The Bogoliubov inequality now becomes
1 i)+ Lo(L)’
F < kBTln[h(ZvrkaT) L|+ %0 a)
Minimizing with respect to L

L/a = [20k,T/D]"*

This result determines the optimum size of a square-well potential with which to
approximate the thermal properties of the system, and it determines the corre-
sponding approximate Helmholtz potential.

Finally we return to the criterion for the use of classical statistics. In Section
16.6 we saw that the energy separation of translational states is of the order of
h*/2mL? and the criterion of classical statistics is that kT > h2/2mL>2. In
terms of D the analogous criterion is

3
D ’ 20mz(k,,T)
4 h4

Q

For larger values of D the procedure would be similar in principle, but the
calculation would require summations over the discrete quantum states rather
than simple phase-space integration.

Finally we note that if the temperature is high enough to permit the use of
classical statistics the original quartic potential problem is itself soluble! Then
there is no need to approximate the quartic potential by utilizing a variational
theorem. It is left to the reader (Problem 20.1-2) to solve the original quartic
potential problem in the classical domain, and to compare that solution with the
approximate solution obtained here.

PROBLEMS

20.1-1. Derive equation (h) of Example 1, first showing that for a harmonic
oscillator

1 az’
) = = A Bhay)
and
1 3%z’
iy Tt
a(ﬂhwo)
where

)
z' = eB’Wo/ZZ = Z e_ﬂ"‘-’o"
n=0
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20.1-2. Solve the quartic potential problem of Example 2 assuming the tempera-
ture to be sufficiently high that classical statistics can be applied. Compare the
Helmbholtz potential with that calculated in Example 2 by the variational theorem.

20.1-3. Complete Example 2 by writing the Helmholtz potential F(T, a) ex-
plicitly. Calculate the “tension” J conjugate to the “length” a. Calculate the
compliance coefficient a~Y(3a/3.7 ).

20.1-4. Consider a particle in a quadratic potential V(x) = Ax?/2a?. Despite the
fact that this problem is analytically solvable, approximate the problem by a
square potential. Assume the temperature to be sufficiently high that classical
statistics can be used in solving the square potential. Calculate the “tension” 7
and the compliance coefficient a~*(da/3F ).

20-2 MEAN FIELD THEORY

The most important application of statistical perturbation theory is that
in which a system of interacting particles is approximated by a system of
noninteracting particles. The optimum noninteracting model system is
chosen in accordance with the Bogoliubov inequality, which also yields
the first-order correction to the noninteracting or “unperturbed”
Helmholtz potential. Because very few interacting systems are soluble
analytically, and because virtually all physical systems consist of inter-
acting particles, the “mean field theory” described here is the basic tool of
practical statistical mechanics.

It is important to note immediately that the term mean field theory
often is used in a less specific way. Some of the results of the procedure
can be obtained by other more ad hoc methods. Landau-type theories
(recall Section 11.4) obtain a temperature dependence of the order param-
eter that is identical to that obtained by statistical mean field theory.
Another approximation, known as the “random phase approximation,”
also predicts the same equation of state. Neither of these provides a full
thermodynamic fundamental equation. Nevertheless various such ap-
proximations are referred to generically as mean field theories. We use the
term in the more restrictive sense.

Certainly the simplest model of interacting systems, and one that has
played a key role in the development of the theory of interacting systems,
is the “two-state nearest-neighbor Ising model.” The model consists of a
regular crystalline array of particles, each of which can exist in either of
two orbital states, designated as the “up” and “down” states. Thus the
states of the particles can be visualized in terms of classical spins, each of
which is permitted only to be either up or down; a site variable o, takes
the value o, = +1 if the spin at site j is up or o, = —1 if the spin at site j
is down. The energies of the two states are —B and + B for the up and
down states respectively. In addition nearest neighbor spins have an
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interaction energy —2J if they are both up or both down, or of +2J if
one spin is up and one spin is down. Thus the Hamiltonian is

= - XJ,00 = BLo, (20.13)
L7 J

where J,. = 0 if i and j are not nearest neighbors, whereas J, s=J it
and j are nearest neighbors. It should be noted that a specific pair of
neighbors (say spins #5 and #8) appears twice in the sum (i = 5, j = 8
and i = 8, j =5).

Quite evidently the problem is an insoluble many-body problem, for
each spin is coupled indirectly to every other spin in the lattice. An
approximation scheme is needed, and we invoke the Bogoliubov in-
equality. A plausible form of the soluble model system is suggested by
focussing on only the jth spin in the Hamiltonian (20.13); the Hamilto-
nian is then simply linear in 0;. We correspondingly choose the “un-
perturbed” model Hamiltonian to be

Hy=~YBo - BY g, (20.14)
J J

where Bj 1s to be chosen according to the Bogoliubov criterion. We
anticipate that B; will be independent of j (B, = B), for all spins are
equivalent. Thus

Hy=~(B+B)Y o= —B*Y o, (20.15)
v b/

A

where we define B*=B+ B (20.16)
Accordingly the “unperturbed” Helmholtz potential is
Fy= —kpTintre P = —Nk,Tln{e*F?" + ¢ 85"} (20.17)

where N is the number of sites in the lattice. The Bogoliubov inequality
assures us that F < Fy + (0~ ;) or

F<Fy~ }J(00),+ BN(a), (20.18)
i,

and we procede to calculate (a), and ( 0,0,),- In the unperturbed system
the average of products centered on different sites simply factors;

<0i0j>0 = <°i>0<°j>0 - <°>(2) (20.19)
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so that F < Fy— NJz,,(0)2 +(B* — B)N(o), (20.20)

where z,, is the number of nearest neighbors of a site in the lattice
(z,, = 6 for a simple cubic lattice, 8 for a body-centered cubic lattice,
etc). Furthermore

ehB" — o= BB" "
(6)0 = BB BB tanh ( BB*) (20.21)

We must minimize F with respect to B. But from equations 20.20, 20.17
and 20.21 we observe that B appears in F only in the combination
B + B = B*. Hence we can minimize F with respect to B*, giving the
result that

B* — B=B=2zJ{o), (20.22)

This is a self-consistent condition, as (o), is expressed in terms of B* by
equation 20.21.

Prior to analyzing this self-consistent solution for (a),, we observe its
significance. If we were to seek (¢ in mean field theory we might proceed
by differentiation (with respect to B) of the Helmholtz potential F (as
calculated in mean field theory; equation 20.20). The applied field B
appears explicitly in eq’n 20.20, but it is also implicit in {¢),. Fortunately
however, (o), depends on B only in the combination B + B = B*, and
we have imposed the condition that dF/dB* = 0. Thus, in differentia-
tion, only the explicit dependence of F on B need be considered. With
this extremely convenient simplifying observation we immediately corrob-
orate that differentiation of F (equation 20.20) with respect to B does give
(0)¢. The “spontaneous moment” (o) in mean field theory is given properly
by its zero-order approximation.

Returning then to equation 20.21 for (o), (and hence for (o)) the
solution is best obtained graphically, as shown in Fig. 20.1. The abscissa
of the graph is $B*, or from equation 20.22

x = BB* = B(2z,,J(s) + B) (20.23)
so that equation 20.21 can be written as

Bl 263 1= 22T

= tanh (x) (20.24)

A plot of (o) versus x from the first equality is a straight line of slope
kgT/2z,,J and of intercept —B/2z,,J. A plot of (o) versus x from the
second equality is the familiar tanh(x) curve shown in Fig. 20.1. The
intersection of these two curves determines (o).




Mean Field Theory 443

1.0
0.9 ]
— <o>=tanh(B*)

T 0.8 =

7 -
<o> 3 5

0.6
05 v

04 1,

03

! =1105* FiEs Bl
f <o> F. Tond

0.2
/
0.1 L

/

0
0 0102 0304050607 0809 10 11 12 13 1.4 15 16 17 18 19 20

pB*=pB+B) —>
FIGURE 20.1

The qualitative behavior of (a(T, B)) is evident. For B = 0, the straight
line passes through the origin, with a slope k,T/2z,,J. The curve of
tanh(x) has an initial slope of unity. Hence, if k 8l/2z,,J >0 the
straight line and the tanh(x) curve have only the trivial intersection at
(o) = 0. However, if k;T/2z,,J < 1 there is an intersection at a positive
value of (o) and another at a negative value of (o), as well as the
persistent intersection at (6) = 0. The existence of three formal solutions
for (o) is precisely the result we found in the thermodynamic analysis of
first-order phase transitions in Chapter 9. A stability analysis there
revealed the intermediate value (o) = 0 to be intrinsically unstable. The
positive and negative values of (o) are equally stable, and the choice of
one or the other is an “accidental” event. We thus conclude that the
system exhibits a first-order phase transition at low temperatures, and that
the phase transition ceases to exist above the “Curie” temperature 7,
given by

kyT. =2z, J (20.25)

We can also find the “susceptibility” for temperatures above T,. For
small arguments tanh y = y, so that equation 20.24 becomes, for T > T,

(o) = B(2z,,J(c) + B), T>T. (20.26)
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or the “susceptibility” is

(o) _ kT | et
PO G T Lo T Sk T i (20.27)

c

This agrees with the classical value of unity for the critical exponent v, as
previously found in Section 11.4.

To find the temperature dependence of the spontaneous moment (o)
for temperatures just below 7, we take B = 0 in equation 20.21 and 20.22,
and we assume (o) to be very small. Then the hyperbolic tangent can be
expanded in series, whence

(o) =2Bz,,J(a) — }(2Bz,,J(a))’ + - -

or

(o) = (%)1 X(T,—T)"* + -+ (20.28)

We thereby corroborate the classical value of  for the critical exponent a.

It is a considerable theoretical trinmph that a first-order phase transi-
tion can be obtained by so simple a theory as mean field theory. But it
must be stressed that the theory is nevertheless rather primitive. In reality
the Ising model does not have a phase transition in one dimension, though
it does in both two and three dimensions. Mean field theory, in contrast,
predicts a phase transition without any reference to the dimensionality of
the crystalline array. And, of course, the subtle details of the critical
transitions, as epitomized in the values of the critical exponents, are quite
incorrect.

Finally, it is instructive to inquire as to the thermal properties of the
system. In particular we seek the mean field value of the entropy S =
—(dF/0T),. We exploit the stationarity of F with respect to B* by
rewriting equation 20.20, with B* rewritten as (k,TBB*)

F= ~Nk,Tin[ef? + e %] — NJz, (o)>
+ Nk,T(BB*){(s) — NB(o) (20.29)

Then in differentiating F with respect to T we can treat SB* as a constant

= _af — BB* -gB*] _ 7 .
. (ar)ps‘_@fN"B‘“[e + e F2"] — Nk,y(BB*){0o)

(20.30)
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The first term is recognized as —F,/T (from equation 20.17), and the
second term is simply (¢;) /T. Thus

S =(H)— FK)/T=5, (20.31)

The mean field value of the entropy, like the induced moment (o), is
given correctly in zero order.
The energy U is given by

U=F+TS=(F+ (#-H)) + TS = (#), (20.32)

The energy is also given correctly in zero order, if interpreted as in 20.32
—but note that this result is quite different from (%,),!

A more general Ising model permits the spin to take the values
-85 -85+1,-S+2,...,8§ -2,8 — 1, S, where S is an integer or half
integer (the “ value of the spin”). The theory is identical in form to that of
the “two-state Ising model” (which corresponds to S = 1), except that the
hyperbolic tangent function appearing in (o), is replaced by the
“Brillouin function”:

(0)o = SBs(BB) = (S + %)coth( 2S2; 1,8B) == % coth gg
(20.33)

The analysis follows step-by-step in the pattern of the two-state Ising
model considered above — merely replacing equation 20.21 by 20.33. The
corroboration of this statement is left to the reader.

In a further generalization, the Heisenberg model of ferromagnetism
permits the spins to be quantum mechanical entities, and it associates the
external “field” B with an applied magnetic field B,. Within the mean
field theory, however, only the component of a spin along the external
field axis is relevant, and the quantum mechanical Heisenberg model
reduces directly to the classical Ising model described above. Again the
reader is urged to corroborate these conclusions, and he or she is referred
to any introductory text on the theory of solids for a more complete
discussion of the details of the calculation and of the consequences of the
conclusions.

The origin of the name “mean field theory” lies in the heuristic
reasoning that led us to a choice of a soluble model Hamiltonian in the
Ising (or Heisenberg) problem above. Although each spin interacts with
other spins, the mean field approach effectively replaces the bi-linear spin
interaction 0,0, by a linear term B,o,. The quantity B, plays the role of an
effective magnetic field acting on o, and the optimum choice of B, is (o).
Equivalently, the product g0, is “fl.inearized," replacing one factor by its
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average value. A variety of recipes to accomplish this in a consistent
manner exist. However we caution against such recipes, as they generally
substitute heuristic appeal for the well-ordered rigor of the Bogoliubov
inequality, and they provide no sequence of successive improvements.
More immediately, the stationarity of F to variations in B* greatly
simplifies differentiation of F (required to evaluate thermodynamic quan-
tities; recall equation 20.30), and the analogue of this stationarity has no
basis in heuristic formulations. But most important, there are applications
of the “mean field” formalism (as based on the Bogoliubov inequality) in
which products of operators are not simply “linearized.” For these the
very name “mean field” is a misnomer. A simple and instructive case of
this type is given in the following Example.

Example

N Ising spins, each capable of taking three values (0 = —1,0, +1) form a planar
triangular array, as shown. Note that there are 2N triangles for N spins, and that
each spin is shared by six triangles. We assume N to be sufficiently large that edge
effects can be ignored.

A AANAA

The energy associated with each triangle (a three-body interaction) is

—¢ if two spins are “up”
— 2¢ if three spins are “up”
0 otherwise

Calculate (approximately) the number of spins in each spin state if the system is
in equilibrium at temperature 7.

Solution

The problem differs from the Ising and Heisenberg prototypes in two respects; we
are not given an analytic representation of the Hamiltonian (though we could
devise one with moderate effort), and a “mean field” type of model Hamiltonian
(of the form BY 6;) would not be reasonable. This latter observation follows
from the stated condition that the energies of the various possible configurations
depend only on the populations of the “up” states, and that there is no
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distinction in energy between the ¢ = 0 and the o = —1 states. The soluble
model Hamiltonian should certainly preserve this symmetry, which a mean-field
type Hamiltonian does not do. Accordingly we take as the soluble model
Hamiltonian one in which the energy —# is associated with each “up” spin in the
lattice (the 0 = 0 and —1 states each having zero energy). The energy & will be
the variational parameter of the problem.

The “unperturbed” value of the Helmholtz potential is determined by

e Pho = (Pt 4 2)V
and the probability that a spin is up, to zero order, is
et

== . -fey~1
fOT (epg_'_z) (1 + 2e )
whereas o, =foo= (i—zf—(”)

Within each triangle the probability of having all three spins up is fo4, and the
probability of having two spins up is 3 f021 (1 = fo1)- We can now calculate (),
and (), directly:

(oo = —Nify
whereas (), = 2Ne{ —2/3 = 3f% (1 - fo,)} = 2Ne{ /%, - 3/2 )
The variational condition then is
F < —NkgTln(e +2) + 2N{ef, - 3efd } + Nefy,
It is convenient to express the argument of the logarithm in terms of f;;
F < —Nk,Tln [;] + 2N [efd; — 3] + Nefy,
(1 -/o1)

The variational parameter & appears explicitly only in the last term, but it is also
implicit in f; . It is somewhat more convenient to minimize F with respect to f, t
(inverting the functional relationship f, , (¢) to consider & as a function of f, )

dF — Nk ,T ( dé )
= = + 6Nefi, — 12Nef,. + N& + Nfy.| =——
dfOT (1 _foy) fOT fOT fOT dfOT

The last term is easily evaluated to be NkpT[f5! + (1 — f,,)71), so that the
variational condition becomes

0

2f,
6Pefo’r = 12Befg’s + fo In [ﬁ] +1=0

This equation must be solved numerically or graphically. Given the solution for
for (as a function of the temperature) the various physical properties of the
system can be calculated in a straightforward manner.
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PROBLEMS

20.2-1. Formulate the exact solution of the two-particle Ising model with an
external “field” (assume that each particle can take only two states; o = —-1 or
+1). Find both the “magnetization” and the energy, and show that there is no
phase transition in zero external field. Solve the problem by mean field theory,
and show that a transition to a spontaneous magnetization in zero external field is
predicted to occur at a non-zero temperature 7. Show that below T, the
spontaneous moment varies as (7 — 7,)# and find 7, and the critical exponent 8
(recall Chapter 11).

20.2-2. Formulate mean field theory for the three state Ising model (in which the
variables o; in equation 20.13 can take the three values —1,0, +1). Find the
“Curie” temperature T, (as in equation 20.25).

20.2-3. For the Heisenberg ferromagnetic model the Hamiltonian is
H= — Z‘lijsi'sj _(I‘BBe)Zsz
ihJ J

where p is the Bohr magneton and B, is the magnitude of the external field,
which is assumed to be directed along the z axis. The z-components of S; are
quantized, taking the permitted values S, = —S,~S +1,...,5 — 1, S. Show
that for S = 1 the mean field theory is identical to the mean field theory for the
two-state Ising model if 2§ is associated with o and if a suitable change of scale is
made in the exchange interaction parameter J;;. Are corresponding changes of
scale required for the S = 1 case (recall Problem 20.2-1), and if so, what is the
transformation?

20.2-4. A metallic surface is covered by a monomolecular layer of N organic
molecules in a square array. Each adsorbed molecule can exist in two steric
configurations, designated as oblate and prolate. Both configurations have the
same energy. However two nearest neighbor molecules mechanically interfere if,
and only if, both are oblate. The energy associated with such an oblate-oblate
interference is € (a positive quantity). Calculate a reasonable estimate of the
number of molecules in each configuration at temperature T.

20.2-5. Solve the preceding problem if the molecules can exist in three steric
configurations, designated as oblate, spherical and prolate. Again all three con-
figurations have the same energy. And again two nearest-neighbor molecules
interfere if, and only if, both are oblate; the energy of interaction is e. Calculate
(approximately) the number of molecules in each configuration at temperature 7.

Answer:
N/10 at k,T/¢ = 0.266; N/5at kT/e = 1.15
N/4 at k,T/e ~ 2.47, 3N/10 at kyT/e = 7.78

N/3at k,T -
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20.2-6. In the classical Heisenberg model each spin can take any orientation in
space (recall that the classical partition function of a single spin in an external
field B is z g, e = fe PP5°% sin6 dfd¢. Show that, in mean field theory,
phalle] T
[B(B + B)S]
20.2-7. 2N two-valued Ising spins are arranged sequentially on a circle, so that
the last spin is a neighbor of the first. The Hamiltonian is

2N

o= Y Jioj0,., — BZaj
Jj=1 J

(8,) = Scoth [8(B + B)S] -

where J; = J, if j is even and J; = J, if j is odd. Assume J, > J.

There are two options for carrying out a mean field theory for this system. The
first option is to note that all spins are equivalent. Hence one can choose an
unperturbed system of 2N single spins, each acted on by an effective field (to be
evaluated variationally). The second option is to recognize that we can choose a
pair of spins coupled by J; (the larger exchange interaction). Each such pair is
coupled to two other pairs by the weaker exchange interactions J,. The unper-
turbed system consists of N such pairs.

Carry out each of the mean field theories described above. Discuss the relative
merits of these two procedures.

20.2-8. Consider a sequence of 2N alternating 4 sites and B sites, the system
being arranged in a circle so that the (2N)™ site is the nearest neighbor of the
first site. Even numbered sites are occupied by two-valued Ising spins, with
o, = £1. Odd numbered sites are occupied by three-valued Ising spins, with
o, = —1,0, + 1. The Hamiltonian is

J
H= -—2JZojaj+1 = BZoj
; y

a) Formulate a mean field theory by choosing as a soluble model system a
collection of independent A sites and a collection of independent B sites, each
acted upon by a different mean field.

b) Formulate a mean field theory by choosing as a soluble model system a
collection of N independent A-B pairs, with the Hamiltonian of each pair being

H,

pair = —2Jooddoeven + Boddoodd + B0,

evenreven

¢) Are these two procedures identical? If so, why? If not, which procedure would
you judge to be superior, and why?

20-3 MEAN FIELD IN GENERALIZED
REPRESENTATION: THE BINARY ALLOY

Mean field theory is slightly more general than it might at first appear
from the preceding discussion. The larger context is clarified by a particu-
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lar example. We consider a binary alloy (recall the discussion of Section
11.3) in which each site of a crystalline array can be occupied by either an
A atom or a B atom. The system is in equilibrium with a thermal and
particle reservoir, of temperature T and of chemical potentials (i.e., partial
molar Gibbs potentials) p, and p,. The energy of an 4 atom in the
crystal is e, and that of a B atom is €. In addition neighboring 4 atoms
have an interaction energy ¢, ,, neighboring B atoms have an interaction
energy &pp, and neighboring 4-B pairs have an interaction energy &, .
We are interested not only in the number of A atoms in the crystal, but
in the extent to which the 4 atoms either segregate separately from the B
atoms or intermix regularly in an alternating ABAB pattern. That is, we
seek to find the average numbers N, and N, of each type of atom, and the
average numbers N,,, N,z and Ny, of each type of nearest neighbor
pair. These quantities are to be calculated as a function of T, p, and p,.
The various numbers N,, N, ... are not all independent, for

N,+N;=N (20.34)

and by counting the aumber of “bonds” emanating from A4 atoms

2N, + N,y =2z, N, (20.35)

nn

Similarly

~

2Ngp + N,y =z, N, (20.36)

where we recall that z,, is the number of nearest neighbors of a single
site. Consequently all five numbers are determined by two, which are
chosen conveniently to be N, and N, ,.

The energy of the crystal clearly is

E=Ne,+ Ngey + N, e, + N gt + Nygepp (20.37)

If we associate with each site an Ising spin such that the spin is “up”

(6 = +1) if the site is occupied by an 4 atom, and the spin is “down”
(o = —1) if the spin is occupied by a B atom, then
H#H=C~— 3 Y J,o00 —BY o (20.38)
iy i
where
J = i€p— $€44 — F€np (20.39)
B = (ess — e44) + 42,(e4a + £55) (20.40)
C=4Ne,+dey+ 2,6, + 22,605+ 2,,655)  (20.41)
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These values of J, B, and C can be obtained in a variety of ways. One
simple approach is to compare the values of E (equation 20.37) and of 5#
(equation 20.38) in the three configurations in which (a) all sites are
occupied by A4 atoms, (b) all sites are occupied by B atoms, and (c¢) equal
numbers of 4 and B atoms are randomly distributed.

Except for the inconsequential constant C, the Hamiltonian is now that
of the Ising model. However, the physical problem is quite different. We
must recall that the system is in contact with particle reservoirs of
chemical potentials p, and py, as well as with a thermal reservoir of
temperature 7. The problem is best solved in a grand canonical for-
malism.

The essential procedure in the grand canonical formalism is the calcu-
lation of the grand canonical potential ¥(T, u,, uz) by the algorithm?

e BY — tre—B(W—ﬁANA_ﬁaﬁa) (2042)

This is isomorphic with the canonical formalism (on which the mean field
theory of Section 20.2 was based) if we simply replace the Helmholtz
potential F by the grand canonical potential ¥, and replace the
Hamiltonian 5# by the “grand canonical Hamiltonian” #— i ,N, —
s Ny

In the present context we augment the Hamiltonian 20.38 by terms
of the form — 3[(fi, + fig) + (i, — fip)X;0,]. The grand canonical
Hamiltonian is then

H'=C - Y YJ00 —BYo (20.43)
[ !
where
¢=C- %N(ﬁ% + ﬂB) (20.44)
and
B =B~ 3(ji, — ip) (20.45)

The analysis of the Ising model then applies directly to the binary alloy
problem (with the Helmholtz potential being reinterpreted as the grand
canonical potential). Again mean field theory predicts an order—disorder
phase transition. Again that prediction agrees with more rigorous theory
in two and three dimensions, whereas a one-dimensional binary crystal
should not have an order—disorder phase transition. And again the critical
exponents are incorrectly predicted.

More significantly, the general approach of mean field theory is appli-
cable to systems in generalized ensembles, requiring only the reinterpreta-
tion of the thermodynamic potential to be calculated, and of the effective
“Hamiltonian” on which the calculation is to be based.

35, (= p4/Avogadro’s number) is the chemical potential per particle.



