
QUANTUM FLUIDS

r8-1 QUANTUM PARTICLES: A .,FERMION pRE-cAS MODEL'

A.t this point we rnight be tempted to test the grand canonical for-
malism on the ideal gas, not to obtain new resulis of course, but to
compare the analytic convenience and power of the various formalisms.
Remarkably, th-e grand canonical formalism proves to be extremely
uncongenial to the classical ideal gas model! The-catastrophe of nonexten-
sivity that plagued the calculation in the canonical formalism becomes
even more awkward in the grand canonical formalisml.
_. As so often happgry iq physics, the formalism points the way to reality.
The awkwardness of the formalism is a signal that the model is unphysical
-that there are no classical particles in nature! There are only fermions
and bosons, two types of quantum mechanical particles. Foi these the
grand canonical formalism becomes extremely simple!

Fermions are the quantum analogues of ttre mat-erial particles of classi-
cal physics. Electrons, protons, neutrons, and a panoply of more esoteric
particles are fermions. The nineteenth century "iaw of impenetrability of
matter" is replaced 9y "tt 

antisymmetry condition on the quantum meiha-
nical wave functionz. This condition implies (as the only consequence of
which we shall have need) that only a singre fermion cin occuw a giuen
orbital state.

-.Bosons are the quanlury analogues of the "waves" of classical physics.
Photons, the quanta of light, are typical bosons. Just as waves-can be
freely superposed classically, so an arrbiffary number of bosons can occupy a
single orbital state. Furthermore, there exist bosons with zero 

'iest

mass-such bosons, like classical waves, can be freely created or annihi-

rThe root of the difficulty lies in the fact that the grand canonical formalism focusses not on the
particles, but on the orbital states. There is then no natural way to count the states "as if the particles
had labels" (later to be corrected by division by N!).

2The wave function must be antisymmetricunier interchange of two fermions, thereby interposing
a node between the fermions and preventing two fermions (of the same spin state) from occupying the
same spatial position.
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lated. The radiation of electromagnetic waves by a hot body is described
in quantum terminology as the creation and emission of photons.

The fundamental particles in nature possess intrinsic angular momen-
tum, or "spin." The (immutable) magnitude of this intrinsic angular
momentum is necessarily a multiple of h/2; those particles with odd
multiples of h/2 are fermions, and those with even multiples of h/2 are
bosons.

Finally, an orbital state of a quantum particle is labeled by the
quantum numbers of its spatial wave function and by the magnetic
quantum number m, of its spin orientation. For a particle in a cubic
container the three spatial quantum numbers are the three components of
the wave vector k (recall equation 76.37), so that an orbital state is
completely labeled by k and 2".

Preparatory to the application of the grand canonical formalism to
Fermi and Bose ideal gases, it is instructive to consider a simpler model
that exhibits the physics in greater clarity. This model has only three
energy levels, so that all summations over states can be exhibited ex-

spatial orbits have energios €1, 12: and er. The model system is in contact
with a thermal reservoir and with a reservoir of spin- | Fermi particles;
the reservoirs impose fixed values of the temperature T and of the molar
Gibbs potential p (which, for fermion systems, is also known as the Fermi
leuel).

Each spatial orbit corresponds to two orbital states, one of spin up and
one of spin down. There are therefore six orbital states, which can be
numbered (n,m,)  wi th  n :1 ,2,3 and f f i , :  -  L ,  +  L.

The grand canonical partition sum factors with respect to the six orbital
states

Z : t r, - r 7zz r,r 7zz z, - r 7zz z,r 7zz z, - r 7zz z,t 7z (18 .1 )

and each orbital state partition sum has two terms, corresponding to the
state being either empty or occupied. In the absence of a magnetic field,

z n , ^ " : 1 1  , - F G " - r t ) (18.2)
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Alternatively we can pair the two orbital states with the same n but
with m": + +

z n , r / 2 2 n , - r / z : 1 7  +  r - B , ' " - D l t : I  + 2 e - B G , - t " )  +  e - 2 F k ,  r " )

( 1 8 . 3 )

This product can be interpreted in terms of the four states of given n: the
empty state, two singly occupied states, and one doubly occupied state.

The probability that the orbital state (n, lrt") is empty is l/2,,^, and
the probability that it is occupied is

fn ,^ "- 
9G,- tr) 1

z n . ^  , B G . - r r )  1 f
(18.4)

The fundamental equation follows directly from equations 18.1 to 1g.3

e-F* :  z :  I l  +  s-BGr-r , l ] 'z [ l  a  , -Bkz-r r ) ] t [ r  +  , -F<z-u ' t l r1 ta.s)

we can find the mean number of particles in the system by differentia-
tion (.,f : -AV/Ap). Alternatively we can sum the proUabitity of oc-
cupation fn,^ over all six orbital states

r : 
nr^,^ 

: R^4,, : . J#r, ., + -:,^ - (18.6)

u :  L En,^fn.- :  , r -29, . ' ,  ,  + ^.  
2t? 

+ =,  
2t '

n , f f i  
' m  

, B @ - u )  1 !  
" B G z - D  

1 1  , F G s - D  q  !

(18.7)
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FIGURE 18. I

The probability of occupation, by a fermion, of an orbital state of energy € at temperature
T.

mains valid. However, the Fermi level p is not a known quantity. lnstead
the value of p adjusts to a change in temperature in such a way as to
maintain N constant-a response governed by equation 18.6.

Unfortunately equation 18.6 does not lend itself easily to explicit
solution for p as a function of ? and fr. However the solution 

"utt 
be

obtained numerically or by series expansions in certain temperature
regions, as we shall soon see. It is instructive first to reconsider the
preceding analysis in more pictorial terms.

The occupation probabllity f of an orbital state of energy e (as given by
equation 18.4) is shown in Fig. 18.1. This occuparion probability is more
general than the present model, of course. It applies to any orbital state of

occurs is of the order of 4k BT (see Problems 18.1-4, 18.1-5, 18.1-6).
The probability of occupation of a state with energlt equal to p is always

one half, and a plot of f (", T) as a functiongf-'e (such as in Fig. 18.1) ls
symmetric under inuersion through the point E : p, f : i (see Problem
18.1-s) .
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The Bose mean occupation number n of an orbital state of energy c, at given T and p,.
The insert is schematic, f.or T, < 4 attd pz < pt.
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f o r e > p a n d T = 0

f o r e < p a n d T = 0

i ( e ,T )

'  7  ( s - B r ' - * ' t
t : _ -  Jt  -  

s B { ' - u Y +  1  \  I  -  
" n . ' - " ,

(18.8)
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Thus, if e, : E2 1 E3; and fr/ : 4, eqtation 18.6 becomes, for T = 0

q  :  4 ( I  _  sBGr- ' ,1 )  +  2 r -B(z -D (1g .9)

or

p :  L+ : ' 1  +  | r " r  l n2  *  . . . (ra.ro)

L" ttrtt case g, is midway between e, and e, at T: 0, and p increases
linearly as Z increases.

It is instructive to compare this result with another special case, in
which \ < e2: er. If we were to have four fermions in ihe system the
Fermi level (p) would coincide with e, at T :0. More interesiing is the
case in which there are only two fermions. Then at T : 0 the Fermi level
lies-between er and ez (: e:). we proceed as previously. Equation 1g.9 is
replaced, for T = 0, by

Z :  2 ( I  -  sQGr- r ) )  +  4 r -B@-r r )

€ ' * e .  1 .
t r : ' - -  -  

i k r r  h 2  +  . . '

and

(  18  .11 )

(18.12)

In each of the cases the Fermi level moves away from the doublv
degenerate energy level. The reader should visualize this effect in thl
pictorial terms of Fig. 18.1, recognizing the centrality of the inversion
symmetry of / relative to the point at E : p.

From these several special cases it now should be clear that the general
principles -that govern the temperature dependence of p (for a syslem of
constant N) are:

(a) The occupation probability departs from zero or unity over a region
of Ae = *ZkaT around p.

(b) As z increases, the Fermi level p, is "repelled" by high densities of
states within this region.

PROBLBMS

18.1-1. obtain the mean number of particles in the fermion pre-gas model by
differentiating v, as given in equation 18.5. Show that the result agrees with N ai
given in equation 18.6.

18.1-2. The entropy of a system is given by S: -kBD1f1ln{, where I is the
probability of a microstate of the system. Each microstat6'ot th'e fermion pre-gas
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model is described by specifying the occupation of a// slx orbital states.
a) Show that there arc 26: 64 possible microstates of the model system, and
that there are therefore 64 terms in the expression for the entropy.
b) Show that this expression reduces to

t  :  -o ' ;  f ' ^ rn f ' ^

and that this equation contains only six terms. what special properties of the
model effect this drastic reduction?

18.1-3. Apply equation 17.27 for u to the fundamental equation of the fermion
pre-gas model, and show that this gives the same result for u as in equation 18.7.
f8.l-4. Show that df /de : - B/4 at € : p. With this result show that f falls to
f :0.25 at approximately e - p" I k"T and that / rises to f :0.75 at approxi-
mately e = F - k,T (check this result by Fig. 18.1). This rule of thumb gives a
qualitative and useful picture of the range of e over which / changes rapidly.
18.1-5. Show that Fig. 17.2 [of /(e,z) as a function of e] is symmetric under
inversion through the point E: !t, f : i. That is, show that f(e,T) is subject to
the symmetry relation

f 0 ' + A , r ) : t - f ( p - A , r )
or

f ( r , T ) : r - f ( 2 p - e . r )

and explain why this equation expresses the symmetry alluded to.
18.1-6. Suppose f(r,T) is to be approximated as a function of e by three rinear
regions, as follows. In the vicinity of e = p, f (e,p) is to be approximated by a
straight line going through the point (r : p, f : , and having the correct slope
at that point. For low e, /(e, p) is to be taken as unity. And at high e, /(e, p) is to
be taken as zero.

what is the slope of the central straight line section? what is the "width," in
energy units, of the central straight line section? compare this result with the
"rule of thumb" given in Problem 18.1-4.

I8-2 THE IDEAL FERMI FLUID

We turn our attention to the "ideal Fermi fluid,', a model system of
wide applicability and deep significance. The ideal Fermi Rurd is a
quantum analogue of the classical ideal gas; it is a system of fermion
particles between which there are no (or negligibly small) interaction
forces.

conceptually, the simplest ideal Fermi fluid is a collection of neutrons,
and such a fluid is realized in neutron stars and in the nucleus of heavy
atoms (as one component of the neutron-proton " two-component fluid"j.
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- composite "particles," such as atoms, behave as fermion particles if
they contain an odd number of fermion constituents. Thus helium-three
('He) atoms (containing two protons, one neutron, and two electrons)
behave as fermions. Accordingly, a gas of 3He atoms can be treated as an

we first consider the statistical mechanics of a general ideal, Fermi fluid.

To calculate the fundamental relation of an ideal fermion fluid we

dynamic fundamental relations do not refer to any particular boundary
condition, and we are free to choose any convenient boundary condition
that facilitates the calculation. we choose the boundary .ottditiottr uf-
propriate to the grand canonical formalism.

The orbital states available to the fermions are specified by the wave
vector k of the wave function (recall equation 16.43) and by the orienta-
tion of the spin (" up" or "down" for a spin- ] fermion). The partition
sum factors over the possible orbital states

t: 
il,tu,^, (18 .13 )

yhe1e. ms ca.n take two_values, rn": j implying spin up and m,: -- 
,

implying spin down. Each orbital state can ne ethei empty ir stngly
occupied..The energy of an empty orbital state is zero, and ihe energyif
an occupied orbital state k, rn " is

8u, -, : # 
: 

# (independe nt or m,)

so that the partition sum of the orbital state k, m " is

z k , ^ " : l +  e - g ( e 2 n , / z ^ \ - p \  ( 1 g . 1 5 )

lt is conventional to refer to the product Zu.r/z.zu._t/z as zu, the

(18.14)
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"partition sum of the mode k"

t : 
il"tu' ̂ ' : lzntTzz x' -r7z

- t  I
:  n  I  I  *  Ze-  F(G2 k2 7z^1-  1"1 + e-  

p(2h2 kz 7z^s-zp1f  (1g.16)'k-*

The three terms refer then to the totally empty mode, to the singly
occupied mode (with two possible spin orientations), and to the doubly
occupied mode (with one spin up and one down).

Each orbital state (k, z,) is independent, and the probability of occupa-
tion is

f  u , ^ " :"- 
Bl{n2 *2 /z^) - D 1

(18.17)
zk , ^ "

ep(ftzk2,/2m)-p) + 1

This function is shown in Fig. 18.1.
At this point we can proceed by either of two routes. The fundamental

algorithm instructs us to calculate the grand canonical potential V
(: - k"T ln Q, thereby obtaining a fundamental relation. Alternatively,
we can calculate all physical quantities of interest directly from equation
18.17. we shall first calculate the fundamental relation and then return to
explore the (parallel) information available from knowledge of the
"orbital-state distribution function" fk. ̂".

The grand canonical potential is

v -  -  krTZhzr:  -kBTLrn 
[r  + , - i ,<{h2*2/zm)-p)] 'z  ( ra.ra)

The density of orbital states (of a single spin orientation) is D(e) de,
which has been calculated in Equation 16.47.

D(e)  de :  lpS 4r :  v  |  2m\ ' / '  '  ' "  '
2n'  de ^" \  h ,  1  

et t 'zde (18.19)

Inserting a factor of 2 to account for the two possible spin orientations, v
can then be written as

, { ,  -  -  zkBTl- tn1t  I  
" -FG-r \ )D(e)  

de- J o

:  -r"r#(T)"' I*et/2tn(l + e-B<.- r"))de (18.20)

unfortunately the integral cannot be evaluated in closed form. euantities
of direct physical interest, obtained by differentiation of V, must also be
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expressed in terms of integrals. Such quantities can be calculated to any
desired accuracy by numerical quadrature or by various approximation
schemes. In principle the statistical mechanical phase of the problem is
completed with equation 18.20.

It is of interest to calculate the number of particles fr in the gas. By
differentiation of V

The first form of this equation reveals most clearly that it is identicalto a
summation of occupation probabilities over all states. Similarly the energy
obtained by differentiation is identical to a summation of ef over all states

u: ( f f iu, :2lo v; ; iD(e)de

:#(T)*I,*ffi10,

(18.21)

(18.22)

A flow-chart for the statistical mechanics of quantum fluids is shown in
Table 18.1. Bose fluids are included, although we shall consider them
explicitly only in later sections. The analysis differs only in several
changes in sign, as will emerge in Section 18.5.

Before exploring these general results in specific detail it is wise to
corroborate that for high temperature they do reduce to the classical ideal
gas, and to explore the criterion that separates the classical from the
quantum mechanical regime.

PROBLEMS

18.2-1. Prove equations c, g, h, i, and j of Table 18.1 (for fermions only).

18-3 THE CLASSTCAL LrMrT AND THE QUANTUM CRTTERTON

The hallmark of the quantum regime is that a fermion particle is not
free to occupy any arbitrarily chosen orbital state, for some states may
already be filled. However at low density or high temperature the prob-
ability of occupation of each orbital state is small, thereby minimizing the
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TABLE 18.1
Statistical Mechanics of Quantum Fluids. The upper sign refers to fermions and the lower
to bosons.
(a) The partition sum factors. The number of spin orientations is go : 25 + 1 (go : 1 for
bosons of spin zeroi go: 2 for fermions of spin t, etc.)
(b) zu is the partition sum of a single orbital state (of definite k and z,).
(c) fu.^ is the mean occupation number (or "occupation probability") of the orbital state
kr f l " .

(d, e, and f) D(.) is the density of orbital states of a single spin orientation.
(g) 'f (7,p) is a fundamental relation.
(h' i, and i) P : P(u,v) is an equation of state, common to both fermion and bosons.

,: il"'u.-, 
: T,f' (u)

z u : l L  1  e - F ( e r - r ) ] + t  ( b )

fu .^ , :  
1

"F(er-r) 
+ 1 

(t)

-  BV :  lnZ :  grf  lnzu: tgrf ,  tn[ f  + ,-BG*-u\ l  (d)
k k

=  +so [ *  h [ l  r  e -B l -p t f  D (e )  de  ( . )- - J g

D(,): -+(2ry\"', 'r '= 
Qr' \  n..)  e-/ '  (r)

Integrating by parts

,r, : - iX(+\"' f - r,r"?. o, (Fundamentar Equation) (e)3 
12112\  h2 I  Jo 

"B(e- t \  
+1

{, : - 
3 Io- u{i goD(e) a': - ?, u

V : - PV (for simple systems)

, :1 !, (equation of state)

effect of the fermion prohibition against multiple occupancy. All gases
become classical at low density or high temperature, in which conditions
relatively few particles are distributed over many states.

The probability of occupancy_of a state of energy e is [eB('-r) + 1]-1,
and this is small (for all e) if s-Ft' is large, or if the fugacity eF" is small:

(h)

(i)

(i)

eB* << 1 (classical regime) (ra.zr)
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In this classical regime the occupation probability reduces to

fn,^" = gQt"-F' (78.24)

In terms of Fig. 18.1, the classical region corresponds to the recession of
the Fermi level pr to such large negative values that all physical orbitals lie
on the "tall" of the f (r,T) curve.

We first corroborate that the occupation probability of equation 18.24
does reproduce classical results, and we then explore the physical condi-
tion that leads to a small fugacity.

The number of particles N is expressed by equation 18.21 which, for
small fugacity, becomes

[{ = -Et-(4\" '  ,ur" [* e-F"rt/z de : to{ ,u, (18.25)
(zn) ' \  h '  I  ro I i

where trr (u quantity to be given a physical interpretation momentarily) is
defined bv

t r r : (18.26)

and where go : 25 * 1 is the number of permissible spin orientations
(equal to two for the spin ] case). Similarly the energy, as expressed in
equation 17 .62, becomes

,  :  
#(#)" '" tu !o* e-8,e3/zde:|o"r#"ur (rs.27)

Dividing

u: trNkBr (18.28)

This is the well-known equation of state of the classical ideal gas. In
addition the individual equations 18.25 and 18.27 can be corroborated as
valid for the classical ideal gas.

With the reassurance that the Fermi gas does behave appropriately in
the classical limit, we may inquire as to the criterion that divides the
quantum and classical regimes. It follows from our discussion that this
division occurs when the fugacity is of the order of unity

h

eBn-1 (classical-quantumboundary) (18.2e)



or, from equation 18.25
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(classical-quantumboundary) (tS.gO)*l(#)=,
_This "quantum criterion" acquires a revealing pictorial interpretation

when we explore the significance of trr. In faci 1,, is the quantum
mechanical wave length of a particle with kinetic energy krT (see irroblem
1.8-3-?):rvhence trr is known as the "thermal wave length." From equa-
tion 18.25 we see that in the classicat timit the fugacityls the ratio of the
"thermal uolume" Nr.to the uolume per particie\of o singre spin irien-
tation) v/(N/s). The system is in the quantum |egime"if tit thermal
uolume is larger than the actual uolume per particli (of 

- 
a single spin

orientation) either by uirtue of large fit or by uirtue of tii r @nlcl coise-
quently of large )rr).

PROBLEMS

18.3-1. calculate the definite integrals appearing in equations 1g.25 and 1g.26 by
letting e : x2 and noting that each of the reiulting integrals is the derivative
(with respect to B) of a simpler integral.
lE.3-2. validate the interpretation of tr, as the "thermal wavelength,'by identi-
fying the wavelength with the momentum p by the quantum mechanical defini-
tion p : h/)r, and by comparing the energy p2/2m to krT.

18.4 THE STRONG QUANTUM REGIME:
ELECTRONS IN A METAL

The electrons in a.metal would_appear, at first thought, to be a very
poor example of an ideal Fermi fluid, for the charges on the electrons
ostensibly imply stlon-g interparticle forces. However the background
positive charges of the flxed ions tend to neutralize the negative chaiges of
the electrons, at least on the average. And the very loig range Jr tne
coulomb force ensures that the average effect is the domiiant Jffect, for
the potential at any point is the resultant of contributions from enor-
mously many electrons and positive ions-some nearby and manv further
re-moved in space. All of this can be made quantitative, and the 

-accuracy

of the approximation can be estimated and cbntrolled by the methodology
oJ solid state physics. we proceed by simply accepting the model 6i
electrons in a metal as an ideal fermion gas, on the'basii of the slender
plausibility of these remarks.
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An estimate of the Fermi level (to be made shortly) will reveal that for
all reasonable temperatures rr >> k"T. Thus electrons in a metal are an
example of an ideal Fermi gas in the strong quantum regime. The analysis
of this section is simply an examination of the Fermi gas in this strong
quantum regime, with the allusion to electrons in a metal only to provide
a physical context for the more general discussion.

Consider first the state of the electrons at zero temperature, and denote
the value of the Fermi level at T : 0 as po (the "Fermi energy"). The
occupation probability / is unity for e < po and is zero for e > p,o, so that
(from equation 18.21)

r  :  t # : ; '  
! e ' ; , t z a e :  f f i r ' { ,

h ' l ^  , f r t \ ' / t
l t o :  2 m \ t " -  V  )

(18.32)

104 K to 105 K (18 .33)

For other previously cited Fermi fluids the Fermi temperature may be
even higher-of the order of 10e K for the electrons in white dwarf itars
or 1012 K for the nucleons in heavy atomic nuclei and in neutron stars.

The enormously high Fermi temperature implies that the energy of the
electron gas is correspondingly high. The energy at zero temperature is

(18.34)

Thus the energy per particle is 3po, or approximately 10a K in equivalent
temperature units.

As the temperature rises, the Fermi level decreases (being "repelled" by
the higher density of states at high energy, as we observed in the "fermion
pre-gas model" of Section 18.1). Furthermore some electrons are "pro-
moted" from orbitals below p to orbitals above;.r, increasing the energy of
the system. To explore these effects quantitatively it is convenient to

(18 .31 )

or

The number of conduction electrons per unit volume in metals is of the
order of 7022 to 1023 electrons/cm3 (corresponding- to one or two elec-
trons per ion and an interionic distance of = 5 A). Consequently for
electrons in metals the Fermi energy po (or the "Fermi temperature"
po/k) is of the magnitude

F o _
kB

(J(r : o) : 2 !P'tD(e) de: i"r,
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invoke a general result for integrals of the form /4(e) f(r,T) de, where
f(e) is an arbitrary function and f(e,Z) is the Fermi occupation prob-
ability. This integral can be expanded in a power series in the temperature
by invoking the step-function shape of f(e,T) at low temperatures
(Problem 18.4-2), giving

Io* +G) f{,,r) de : IrrO de + +& "r)'+'0,)
'lta 

,+ f f i (k r r )o+" ' (p)  +  . . .  (18.3s)

where Q' and E "' are the first and third derivatives of f with respect to e,
evaluated at e : p. It should be noted that p is the temperature depen-
dent Fermi level (not the zero-temperature Fermi energy po).

We first find the dependence of the Fermi energy on the temperature.
The Fermi energy is determined by equation 18.21

frr : z lo* f e,r)D(e) o, : #(#)'' ' Io*,,,,rre,r) de

(18.36)

Then taking 0(e) - er/2 in equation 18.35

+ff) ' .  ]  (1837)
At zero temperature we recover equation (18.32) for po. To carry the
solution to second order in 7 it is sufficient to replace p by po in the
second-order term. whence

(18.38)

This result corroborates our expectation that the Fermi level decreases
with increasing temperature. But for a typical value of po/ka (on the
order of 104 K) the Fermi level at room temperature is decr6ase"d 6y only
around 0.7% from its zero-temperature value!
- The energy is given in an identical fashion, merely replacing er/z by

e3/2, gsving

rt: #(T)*o"l'*

p(r) :,.1'- #ff) '. ]

u: +(T)*r'"1, ** " ' (T ) ' .  ]  
(183e)
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comparison with eql,alion 18.32 corroborates that at T : 0 we recover
the relationship U: iNpo (equation 18.34). This suggests dividing equa-
tion 18.39 by equation 78.37, giving

u: fr,,fr * i"'(T)'. ] (18.40)

Replacing p(T) by equation 18.38 we finally find

U _

and the heat capacity is

* +*(Tr + (18.41)

(r8.42)

capacity from its classically expected value is in excellent agreement with
experiment for essentially all metals.

In order to compare the observed heat capacity of metals with theory it
must be recalled (Section 16.6) that the lattice vibrations also contribute a
term proportional to 7^3, in addition to the linear and cubic terms
contributed by the electrons

C :  A T  +  B T 3  +  . . ' (18.43)

c: |ru,(+ffi + o1r,)

The coefficient A is equal to the coefficient in equation 18.42 whereas B
arises both from the cubic terms in equation 18.42 and (predominately)
from the coefficient in the Debye theory. - It is conventional to plot
experimental data in the form C/T versus 72, so that the coefficient 7 is
obtained as the T : 0 intercept and the coefficient ̂ B is the slope of the
straight line. In fact such plots of experimentaL data do give excellent
straight lines, with values of. A and B in excellent agreement with
equation 78.42 and. the Debye theory (16.51).

The heat capacity (18.42) can be understood semiquantitatively and
intuitively. As the temperature rises from z : 0, electrons are "promoted"
from energies just below po to energies just above po. This population
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transfer occurs primarily within a range of energies of the order of 2k BT
(recall Fig. 18.1 and Problem 18.1-7). The number of electrons so pro-
moted is then of the order of D(p,)Zk"7, and each increases its energy by
roughly krT. Thus the increase in energy is of the order of

U -  U o = z D ( t r ) ( k " T ) '

But D(p,o) : 3fl72p,r, so that

(ra.+a)

U _ ( J ^ _ z u ( t c " r ) z
" lro

g= |Nk ,?T)

(18.45)

and

(18.46)

This rough estimate is quite close to the quantitative result calculated in
equation 78.42, which merely substitutes n273 f.or the factor 2 in the
parentheses of equation 18.46.

PROBLEMS

18.4-1. Show that equation 18.32 can be interpreted as pe : n2*r7Zm_where k"
is the radius of the sphere in_k-space such that one octant contains 2fr particles
(recall Section 16.6). Why 2fr rather than ,f particles?
18.4'2- Derive equation 18.35 by the following sequence of operations:
a) Denoting the integral in equation 18.35 by 1, first integrate by parts and let
O : /0"0(r') de'.Then expanding O(e) in a power series in (e - p) to third order,
show that

I:-^>=,*ffi '^
with

-  f e .  . - - d f  f @  p x
, ^ :  l n  G  -  p ) ^ l i d e :  - B - ^  I  L x - d x

' - F * ( e '  +  7 ) "

D) Show that only an exponentially small error is made by taking the lower limit
of integration as - oo, and that then all terms with m odd vanish.
c) Evaluate the first two nonvanishing terms and show that these agree with
equation 18.35.
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18.5 THE IDEAL BOSE FLUID

The formalism for the ideal Bose fluid bears a strikingly close similarity
to that for the ideal Fermi fluid. As was anticipated in Table 18.1, and as
we shall validate here, the formalisms differ only in several changes in
sign. But the consequences are dramatically different. Whereas fermions at
low temperatures tend to "saturate" orbital states up to some specific
Fermi energy, bosons all tend to "condense" into the single lowest orbital
state. This condensation happens precipitously, at (and below) a sharply
defined "condensation temperature." The resultant phase transition leads
to superfluidity in aHe 

1a phenomenon not seen in 3He, which is a
fermion fluid) and it leads to superconductivity in lead and in various
other metals.

We consider an ideal Bose fluid, composed of particles of integral spin.
The number of spin orientations is then go: 25 * 1, where S is the
magnitude of the spin.

The possible orbital states of the bosons in the fluid are labeled by k
arl'd m,, precisely as in the fermion case, and again the grand canonical
partition sum factors with respect to the orbital states (as in line a of
Table 18.1).

The partition sum of a single orbital state is independent of m,, and is,
for each value of m "

z u :  z u , ^ " :  I  a  r - B G * - r r ' )  |  g - F Q e * - z r )  a  g - B G e * - 3 p )  +  . . .

1

1  -  , -  B ( t * -  t t l

This validates line (b) of Table 18.1.
The average number of bosons in the orbital state k, rn " is

(18.47)

f i u , ^ " :  f e - F G o - r D  4  2 r - B Q e x - z r D  +  3 e - B ( 3 e 1 , - 3 p )  +  . . . 1 / r u , , , "

: o 
"r*rn 

zu,^,

which is just the analogue of the relation PN:0/7p.lnZ,but is now
applied to a single orbital state. Carrying out the differentiation we find

(18.48)

(18.4e)f iu , - "  =  f  u ,^" :
tBG* -u )  -  1

and this is the result listed in line c of Table 18.1. It is important to note
that, in contrast to the fermion case, /u.-. is not necessarily less than (or
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The form of D as -a_function of B(e - p) is shown in Fig. 1g.2. The
occupation number falls from an infinite value at e: p io unity at
,: r! + 0-693kaT- In the insert of Fig. 1g.2, the orbiial occupation
number is shown schematically as a function of e for two diiferent

- The grand canonical potential v is the rogarithm of z which, in turn, is
the product of the zu,^, $ven in equationlg.ql. Thus, as in Table 1g.1
(lines d to g),

or, integrating by parts

h  [ t  -  e -BG-p11D(e )  de (18.50)

(1s.51)

FV : ,olo*

v - - ?ffi(#)*I,-a#ta,
and again the mechanical equation of state is p : 2u/3v (lines i and j of
Table 18.1).

For a system of particles maintained at constant p by a particle
reservoir the thermodynamics follows in a straightforward fashion. 

^But 
for

a system at constant N the apparently innocuous formalism conceals
some startling and dramatic consequences, with no analogues in either
fermion or classical systems. As a preliminary to such consi-clerations it is
useful to turn our attention to syitems in which the particle number is
physically nonconserved.
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18.6 NONCONSERVED IDEAL BOSON FLUIDS:
ELECTROMAGNETIC RADIATION REVISITED

exist processes, for instance, in which two photons interact through a
nonlinear _coupling to.produce three photons. How then are we to a-clapt
the formalism of the ideal Bose fluid to this possibility of nonconserva-
tion?

For p: 0 the grand canonical formalism becomes identical to the

But the nonconservation of the particles requires p to vanish and thereby
achieves. exact equivalence between the two iormaiisms. only the languagl
changes!

The number of photons of energy e is (eP' - 1)-t, where the permitted
energies are given by

,  - 2 r  h cE : n . i : r a A : T

Here c is the velocity of light and l, is the quantum mechanical wave-
length of the photon (or the wavelength of the normal mode, in the mode
language of Section 16.7). The population of bosons of infinitely long

(ra.sz)
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wavelength is unbounded3. The energy of these long wavelength photons
vanishes, so that no divergence of the energy is associated with the formal
divergence of the boson number.

To recapitulate, electromagnetic radiation can be conceptualized either
in terms of the normal modes or in terms of the quanta of excitation of
these modes. The former view leads to a canonical formalism. The latter
leads to the concept of a nonconserved Bose gas, to the conclusion that
the molar Gibbs potential of the gas is zero, and to an unbounded
population of (unobservable) zero energy bosons in the lowest orbital
state.

All of this might appear to be highly contrived and formally baroque
were it not to have a direct analogy in conserued boson systems, glving
rise to such startling physical effects as superfluidity in aHe and supercon-
ductivity in metals, to which we now turn.

PROBLEMS

f8.6-1. Calculate the number of photons in the lowest orbital state in a cubic
vessel of volume 1 m3 at a temperature of 300 K. What is the total energy of these
photons? What is the number of photons in a single orbital state with a
wavelength of 5000 A, and what is the total energy of these photons?
r8.6-2.
(a) In applying the grand canonical formalism to the photon gas can we use the
density of orbital states function D(e) as in equation (f) of Table 18.1? Explain.
(b) Denoting the velocity of light by c, show that writing c : (wavelength/peiod)
implies os : ck. From this relation and from Section 16.5 find the density of
orbital states D(e).
(c) Show that the grand canonical analysis of the photon gas corresponds
precisely with the theory given in Section 16.8.

18-7 BOSE CONDENSATION

Having the interlude of Section 18.6 to provide perspective, we focus on
a system of conserved particles enclosed in impermeable walls. Then, as
we saw in Fig. 18.2 and the related discussion, the molar Gibbs potential
p must increase as the temperature decreases fiust as in the fermion case).

Assuming the bosons to be material particles of which the kinetic
energy is e: p2/2m, the density of orbital states is proportionalto er/2

3Of course such infinite-wavelength photons can be accommodated only in a infinitely large
container, but the number of photons can be increased beyond any preassigned bound in a finite
container of sufficiently large size.
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(equation f of Table 18.1) and the number of particles is

[ t": . .Bov r(4\" '  f  
e'/z ,:  

Q " f \ h ' )  l o  { b * - t d E

where { is the fugacity

1 : ,Bt"

This observation encourages us to expand the integral in equation 18.53 in
powers of the fugacity, giving

r " : l# W) "1$ { r, ", )"' F,,,( t) : # r,,,r r, (1 8.56)
where tr, is the "thermal wavelength" (equation 18.26) and

F t,G): 8,#: {  + #. #. (rs.sz)
At high temperature the fugacity is small and Frrr({) can be replaced by {
(its leading term), in which case equation 18.56 reduces to its classical
form 18.25.

Similarly

, : lffiW) "]* u ",t"' F,,,( t) : ]r,,r #,,,,,*,

(18.s3)

(18.s4)

and where the subscript e is affixed to N" for reasons that will become
understandable only later; for the moment fi" is simply another notation
for N. The molar Gibbs potential is always negative (for conserved
particles) so that the fugacity lies between zero and unity.

0 < { < 1 (r a .ss)

t 3+  -  + . . .
ettt

(18 .s8)

where

Fr / , ( t )= : t ,  # :8 .# (18.5e)
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FIGURE 18.3

The functions 4nG) and F rr({) that characterize the particle number and the energy
(equations 18.57-18.60) of a gas of conserved bosons.

Again the equation for u reduces to its classical form lg.z7 it Frrr({) is
replaced by {, the leading term in the series.

Dividing 18.58 by 18.56

3 - - -  F r r ( t )U: |N"krrffi (18.60)

(ts.or)

so that the^ratio Frn(E)/Frtr({) measures the deviation from the classical
equation of state.

The two functions satisfy the relation

#Frrr(a : 
I'rr,(*)

from which it follows that the slope of Fsrr(t) at { : 1 is equal to 4,,(1),
or 2.612. The slope of Frrr({) at €: l iSlnfinite (problem 18.7-Z\.-"

\,2(o=#^r;

Fs/2(o= 
Fftn^r,
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The formal procedure in analyzing a given gas is now explicit. Let us
suppose that N", V, and T are known. Then Frrr(t) : N")rt /gnV is
known, and the fugacity € can be determined dii6ctly from fig. 

"f 
A.l.

Given the fugacity all thermodynamic functions are determined in the
grand canonical formalism. The energy, for example, can be evaluated by
Fig. 18.3 and equations 18.58 or 18.60.

All of the previous discussion seems to be reasonable and straightfor-
ward until one suddenly recognizes that given values of fr", V, and, T may
result in the quantity N"Nr/SoV being greater than Z.6Ii. Then Fig. 1g.3
permits no solution for the fugacity {! The analysis fails in this "extreme
quantum limit"!

A moment's reflection reveals the source of the problem. As fl"Nr/goV
(: FvrGD approaches 2.672 the fugacity approaches unity, or tliLe motir
Gibbs potential p approaches zero. But we have noted earlier that at
q : 0 the occupation number n of the orbital state of zero energy
diverges. This pathological behavior of the ground-state orbital was lost in

we po-stpone briefly the corrections to the analysis that are required if
govT[I")t3r> 2.612, to first evaluate the temperature at which the failure
of the "integral analysis" (as opposed to the "summation analysis")
occurs. Setting goV/N")i, : 2.612 we find

knr":+(*#)" ' (rs.oz)

where { is called the Bose condensation temperature. For rcmperarure
greater than T, the "integral analysis" is ualid. At and below T" a,,Bose
condensation" occurs, associated with an anomalous population of the
orbital ground state.

If the atomic mass m and the observed number density ft"/grV of
liquified aHe are inserted in equation 18.62 one finds a condensation
temperature reasonably close (= 3 K) to the temperature (2.I7 K) at
which superfluidity and other nonclassical effects occur. This agreement is
reasonable in light of the gross approximation involved in treating aHe
liquid as an ideal noninteracting gas.

To explore the population of the orbital ground state, and of other
low-lying excited orbital states, we recall that the total number of
particles is

& :  I  n ( 'u )  :  so l feBGu- tD-  1 ] - '
k , ^ "  k

(rs.or)
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and the allowed values of eu are

p ' = h '  l ! * ! * _ 1  \ -  1 , 2  t z ,e , " .n , ,n . :  ; ; :  z ^ l  &  
*  

E*  ^ r , )  
:  

, - r * (n1*  
n ' z ,  +  n | )

(18.64)

Ezrr -  €rrr  :  6h2/mYztt  = 2.5 x 10-37 J

(trr ,  -  enr)/ka = 2 x 10-t4 K (18.65)

Thus the discrete states are indeed uery closely spaced in energy-far
closer_ than k 

"T 
at any reasonable temperature. we might well h-ave felt

confident in replacing the sum by an integral!
But let us examine more closely the population of each state as the

chemical potential approaches ern from below. In particular we inquire as
to the. value of pr for which the population of the orbital ground state
alone is comparable to the entire number of particles in the gis. Let n o be
the number of particles in the ground state orbital, so that [eip B(e,,, 

j p)
- 1l-t : n o. Then if no >>> 1 it follows that BGrr, - p) i.. f ind we
can expand the exponential to first order, so that no- k"T/(errr - rr).
Thus the population of the orbital ground state becomes compaiible'to
the entire number of particles in the system (say no - 702\ if B(err, - p)
-  10 -22 .

what, then, is the population of the first excited orbital state? The
energy difference (errr - 1t)/k" is - l0-2r K (for T = 70 K) whereas
(ezrr_- Enr)/ks = 10-14 K (equation 18.65). It follows that nrrr/no=
10-7. The population of higher states continues to fall extremetv rapiarv.
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As the temperature decreases in a Bose gas the molar Gibbs potential
increases and approaches the energy of the ground state orbital. The
population of the ground state orbital increases, becoming a nonnegligible
fraction of the total number of bosons in the gas at the critical tempera-
ture {. The occupation number of any individual other state is relatively
negligible.

As the temperature decreases further p cannot approach closer to
the ground state energy than B(p - €'l) : l/N - 70-" (at which value
the ground state alone would host all N particles in the gas!). Hence the
ground state shields all other states from too close an approach of p, and
each other state individually can host only a relatively small number of
particles. Together, of course, the remaining states host all the particles
not in the ground state.

With this understanding of the mechanism of the Bose condensation it
is a simple matter to correct the analysis. All orbital states other than the
ground state are adequately represented by the integral over the density of
orbital states function. The ground state energy must be separately and
explicitly listed in the sum over states.

The number of particles is, then

fi l  :  no+ [1"

where n o is the number of particles in the ground state orbital

(18.66)

(18.67)

and where fr" is ttre number of particles in "excited states" (i.e., in all
orbital states other than the ground orbital state). The number of "excited
particles" .&, is as given in equation 18.54.

The expression 18.59 for the energy remains correct, since the popula-
tion of the zero energy orbitals makes no contribution to the energy. Thus
the entire correction to the theory consists of the reinterpretation of ft" as the
number of excited particles, and the adjuncture of the two additional
equations 18.67 and 18.68.

Equivalently, we can simply add the ground state term to our previous
expression for the grand canonical potential (equation 18.51), giving the
fundamental relation

n o :  ( e - F u  +  1 ) - t  :  = 3 -
1 - €

*: gok"rln(1 - t) - sok"TftrrtrG) (rs.os)

where, of course, { is the fugacity eqp.
With equations 18.56 to 18.60 and 18.66 to 18.67, we can explore a

variety of observable properties of Bose fluids. These properties are
summarized in Table 18.2 and illustrated schematically in Fig. 18.4.
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TABLE 18.2
hoperties of the ldeal Bose trluid

Fundamental equation

V:  kaTtn(r  -  { )  -  kRr(V/Nr)Frr r (€)

Condensation temperature

0,,,:+(##)*
Condensed and excited bosons

F
N : n 6 + N r ,  , o :  f a ,  4

T > 7 , ,  , o < f r ,  & = i V :

T < 7 , . :  n o / N - t - W " 7 t t t :

- dr' 'G)

#F''(t)

' - ( ; ) -

Energy

T> T,: ,  =)*orrff i

r < r,, u :]rw,rffi(+)* : o.76NkBr,(+)"'

Heat capacity c, (per particle)

r ,  \ , , " =10 ,1+y lP  - f  i , ' \ l ! l
-  L - ' t n ( E )  2  F i n G ) l

T < T , :  . , , - t r O r ( { ) " t

Entropy

r , r,, s : ]r "{rrrz 
({) - iVr, rn f

r. T, s : ]*rftrrr,(1) : 3 ts*,ft
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T/7.

' 
c, = /fr h 

"T " 
x o.st (T / T 

")5/ 
2

b"= L.gfrka(Ttr")3'2

t l
0.25?c 0.5Tc 0.75Tc Tc L.25Tc

?
FIGURE I8.4

Properties of an ideal Bose fluid. The energy and heat capacity for I > {, are schematic.

First, consider the temperature dependence of the number of bosons in
the orbital ground state. For T < T" the maximum number of bosons that
can be accommodated in excited states is

nO

0.5

i
I
r 1

cu
Nk"

I

r " :  
* * ' r t r (7 ) ,  

T<7,

and in particular, as T - 7,, fr" - fr, so that

N : { nr,r1t1
I'" 

J/

(18.6e)

Classical value /
u=2frn"r /

(18.70)



where tr. is the value of )r, at T: {. Dividing

The number of particles in the ground state is then

, . 7 ,

This dependence is sketched in Fig. 18.4.
The energy of the system is also of great interest as its derivative is the

heat capacity, an easily observable quantity. For Z > T, the energy is
given by equation 18.60. For 7 < { equation 18.58 can bi written in-the
form

u : ]r,r# r,,,rr, : ]r,, ffi F, r,(r)

: t ro,r# * : lroBz(0.51)( +)"'

*: (t)': (+)"'

f f : t - t : , - (+)" '

I  r  \ 5 / 2: 0.76frtk Br,l +l
\  r .  /

cu: t.efrrrc"(+)"'

Bose Condensation 421

(ra.zr)

\78.72)

(18.73)

.  T < 7 ,  ( 1 8 . 7 4 )

fl is of particular interest that c,: l.gNkB at T: 7,, avalve well above
the classical value l.5NkB which is approached in the classical regime at
high temperature.

calculation of the heat capacity at T > { requires differentiation of
equation 18.60 at constant N, and elimination of (d{/dr)" by equation
18.56. The results are indicated schematically in Fig. 18.4 and given in
Table 18.2.

_ The unique cusp in the heat capacity at T : { is a signature of the
Bose condensation. A strikingly similar discontinuity is obierved in aHe
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fluids; its detailed shape appears to be in agreement with the renormaliza-
tion group predictions for the universality class of a two-dimensional
order parameter (recall the penultimate paragraph of Chapter 12).

Finally we note that the Bose condensation in aHe is accompanied by
striking physical properties of the fluid. Below d the fluid flows freely
through the finest capillary tubes. It runs up and over the side of breakers.
It is, as its name denotes, "superfluid." The explanation of these proper-
ties lies outside the scope of statistical mechanics. It is sufficient to say
that it is the "condensed phase," or the ground state component, that alone
flows so freely through narrow tubes. This component cannot easily
dissipate energy through friction, as it is already in the ground state. More
significantly, the condensed phase has a quantum coherence with no
classical analogue; the bosons that share a single state are correlated in a
fashion totally different from the excited particles (which are randomly
distributed over enormously many states).

A similar Bose condensation occurs in the electron fluid in certain
metals. By an interaction involving phonons, pairs of electrons bind
together in correlated motion. These electron pairs then act as bosons. The
Bose condensation of the pairs leads to s.uperconductivity, the analogue of
the superfluidity of aHe.

PROBLEMS

18.7-1. Show that equations 18.56 and 18.58, for N" and U, respectively, ap-
proach their proper classical limits in the classical regime.

18.7-2. Show that Frn(\), Frn(l), and Firr(I) are all finite, whereas F!rr(7) is
infinite. Here Firr(\) denotes the derivative of. Frrr(x), evaluated at x : !.
Hint: Use the integral test of convergence of infinite series, whereby Ef;:rf (n)
converges or diverges with /f/(x) dx (rt 0 < fn*, < f, for all n).

18.7-3. Show that the explicit inclusion of the orbital ground state contributes
gok'T ln(1 - {) to the grand canonical partition sum, thereby validating equa-
tion 18.68.


