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The result, left to the reader, is that the red die has shown a one in + of
the throws, a two in *,..., a five in f, and a six in f of the recorded
throws. The probability of a (red) six, in this restricted set of throws, is |.

The red die is the analogue of our system of interest, the white dice
correspond to the reservoir, the numbers shown correspond to the energies
of the respective systems, and the restriction to throws in which the sum is
12 corresponds to the constancy of the total energy (of system plus
reservoir).

The probabilily f i of the subsystem being in state j is equal to the fraction
of the total numbei of states (of system-plus-reseruoir) in which the subsys-
tem is in the state j (with energt E,):

o."r(E,o, - Er)
(16 .1 )

o,o, ( E,o, )

Here E,o, is the total energy of the system-plus-reservoir, and Q,o, is
the total number of states of the system-plus-reservoir. The quantity in the
numerator, O.",(E,o, - E,) is the number of states available to the
reservoir when the subsysiem is in the state / (leaving energy Ero, - E, in
the reservoir).

This is the deminal relation in the canonical formalism, but it can be
re-expressed in a far more convenient form. The denominator is related to
the entropy of the composite system by equation 15.1. The numerator is
similarly related to the entropy of the reservoir, so that

fj

\16.2)

If U is the average value of the energy of the subsystem, then the
additivity of the entropy implies

S,o,(8,o,)  :  s({ /)  *  S,".(8,o, -  U) (16 .3 )

Furthermore, expanding S,".(E,^- Er) around the equilibrium point
Ero, - U;

s."r(E,o, - Er) :  s,.,(E,o, - U +, - t ,)

:  s...(E,o, - u) +(u - n,)7r (16.4)

No additional terms in the expansion appear (this being the very defini-
tion of a reservoir). Inserting these latter two equations in the expression
for f,,

f : eG/ klr){u- rs(u)} e- O/ kB'r) Ei (ro.s)



Furthermore u - Tq(ou) is the Helmholtz potentiar of the system, so thatwe finallv achieve the fundamental result'f- iilp-tiu"iiirv tl .t liisubsystem being in the state 7
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The quantity 7/FBT app€ars so pervasively throughout the theory that itis standard practice to adopt the notation

B = 7/ (knr) (16.6)

f : epFe-pEj (16.7)

(16.8)

of course the Helmholtz potential is not known; it is in fact our task tocompute it. The kev to its evaluation is the otreruutior, *'1-"'a]"-it"r*i;role of a state-independent noro'uri"uiion factor i" 
"q""ii""'ro.z.

Df, :  ,Fr l r -Br;L :  1
J J

e - F F :  Z

where Z, the "canonical partition sum,,' is defined bv

Z  = l e - B n i
J

" 
W: haue _now formulated a compl

fundamental relation in the canonicil

d in the relation

-  BF :  ln le-Bzi  = lnZ
J

which should be committed to memory.

1,,1^r..."0:.Tigi -,9f the, consisteni'y of the formalism follows from
I::gtis^.:* 

r^!,^'f.the, probabi{l gl. 6ccupation ;a th. ;ih state, which(from equation's 76.7, i6.g anO t"O.fO;-;;;'b";;trt#j in the very useful

f i :  s-PntrE e-Bn,

(16.e)

(ro.ro)

form

(ro.u)
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The average energy is then expected to be

u :  LBj f j :  Ln,r-oEiTls-ot ,
J J I

(16.r2)

u:  - (d /dB) rnz (16.13)

Insertion of equation 16.9, expressing Z in terms of .F, and recalling that
P : 7/kBT reduces this equation to the familiar thermodynamic relation
U: F + f,S - F - T(AF/AT) and thereby confirms its validity. Equa-
tions 16.12 and 16.13 are very useful in statistical mechanics, but it must
be stressed that these equations do not constitute a fundamental relation.
The fundamental relation is given by equations 16.9 and 16.10, giving F
(rather than U) as a function of B,V, N.

A final observation on units and on formal structure is revealing. The
quantity B is, of course, merely the reciprocal temperature in o,natural
units." The canonical formalism then gives the quantity BF in terms of B,
V, and N. That is, F/T is given as a function of l/7, V, and N. This is a
fundamental equation in the representation Sft/f l(recall Section 5.4). Just
as the microcanonical formalism is naturally expressed in entropy repre-
sentationo the canonical formalism is naturally expressed in S[F] repre-
sentation. The generalized canonical representations to be discussed in
Chapter 17 will similarly all be expressed most naturally in terms of
Massieu functions. Nevertheless we shall conform to universal usage and
refer to the canonical formalism as being based on the Helmholtz poten-
tial. No formal difficulties arise from this slight "misrepresentation."

PROBLEMS

16.1-1. Show that equation 16.13 is equivalent to U : f'+ fS.
16.l-2. From the canonical algorithm expressed by equations 16.9 and 16.10,
express the pressure in terms of a derivative of the partition sum. Further, express
the pressure in terms of the derivatives 0Er/0v (and of z and the {). can you
give a heuristic interpretation of this equation?
16.1-3. Show that S /k, : B2AF/ AP and thereby express S in terms of Z and its
derivatives (with respect to B).
16.l-4. Show that c,: -B(}s/AB), and thereby express c, in terms of the
partition sum and its derivatives (with respect to B).

Answer:

cr :  N-rk"B 'W
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16-2 ADDITTVE ENERGIES AND
FACTORIZABILITY OF THE PARTITION SUM
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To illustrate the remarkable simplicity of the canonical formalism werecall rhe two-state system of sectibn r5.:. tn that modli r o]rG"i#
able "atoms" each_ were presumed to have two po-i.ritr. statEs, ofelergies 0 and e. Had we attributed even only three states to each atomthe problem would have become so difficult'as to ue-i"sor"ure by themicrocanonical formalism, at least for general values of the excitation
ene_r_gies. By the canonical formalism it iJsimple indeed!

we consider a syst-em composed or fi oisiinguishable ,.elements,,, anelement_being an independent (noninteracting)"excitutio' mode of thesystem. If ihe system-is composed of noninter uiiingmaterial constituenls,
such as the molecules of 

-an 
ideal gas, the ..elements,, refer to theexcitations of the individual molecules.-in strongly inter;ciing systems theelements may be wavelike collective excitations "s.i"fr 

ur uiUrutional modesor electromagnetic modes. The identifuing characteris;;; 
"j 

*,,element,, isthat the enerq/ of the system is a sim 6uer the energiei if n, erements,which are independent and noninteractins.
Each element can exist in a set of oibttal states (we henceforth use theterm orbital state to distinguish the states of an element rio- tr," states ofthe collective system)..ThE- energy of the i th element in its jth orbitalstate .is e,r. ,Each of the elements need not be the same, either in theenergres or the number of its possible orbital states. The total ,rrrsll it ti,system is the sum of the single-element energies, and each et{meit rspermitted to occupy any one of its orbital states"independently of the orbitilstates of the other elements. Then the partition sum is 

'r

:  I  e- F" ' i l  
"-  

Bvr l  
"-  

Bet1.
J  j '  j "

:  z t z 2 z 3  - .  .

where 2,, the "partition sum of the i th element." is

z , :  le -B ' , ,
J

The partition sum factors. Furthermore the

Z :  I  s - B G t i
j ,  j "  j " , .  .

: I ,- Ferys
j , j " j " ,

- Brr i ,e- Fuu'

(16.r4)

(16.1s)

(ro.ro)

(ro.rz)

(ro.rs)

Helmholtz potential is additiue
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ouer elements

-  B F  :  l n Z  :  l n z ,  *  l n  z ,  *  . . . (16.1e)

This result is so remarkably simple, powerful, and useful that we em.
phasize again that it applies to any system in which (a) the energy is
additive over elements and (b) each element is permitted to occupy any of
its orbital states independently of the orbital state of any othei element.

The "two-state model" of section 15.3 satisfies the above criteria.
whence

Z :  z f r :  ( 1  +  , - 8 " ) , (16.20)

and

F :  - f l k n r h ( 1  +  t - 8 " ) (76.2r)

It is left to the reader to demonstrate that this solution is equivalent to
that found in Section 15.3. If the number of orbitals had been three rather
than two, the partition sum per particle z would merely have contained
three terms and the Helmholtz potential would have contained an ad-
ditional term in the argument of the logarithm.

The Einstein model of a crystal (section 15.2) similarly yields to the
simplicity of the canonical formalism. Here the "elements" are the vibra-
tional modes, and the partition sum per mode is

z  :  |  +  r - B h o o  1  r - Z Q h o s - r  . . .

This "geometric series" sums directly to

: I s-"Fh,o (16.22)
n - O

(16.23)

There are 3N vibrational modes so that the fundamental equation of the
Einstein model, in the canonical formalism. is

F -  -F-t  ln z3N :  3fr lkBT ln (1 -  s-Fhoo) (16.24)

Clearly Einstein's drastic assumption that all modes of vibration of the
crystal have the same frequency is no longer necessary in this formalism.
A more physically reasonable approximation, due to P. Debye, will be
discussed in Section 16.7.
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PROBLEMS

16.2'l- consider a system of three particles, each different. The first particre hastwo orbital states, of energies-€1r and err. The second particle has permissible
:_1".t9t": e, and e22, zfld the third particle has permissible energies q, and err.write the partition sum expricitly in the form oi equation r6.r4i and by explicit
algebra, factor it in the form of equation 16.17.
16'2-2' Show that for the two-level system the Helmholtz potential calculated inequation 16.21 is equivalent to the fundamental equation iound in Section 15.3.
16.2-3. Is the energy additive over the particles of a gas if the particles areuncharged mass points- (with negligible gravitational inteiction)? Is the partition
sum factorizable if half the particles carry apositive electric 

"hurge 
and half carry

a negative electric charge? Is the partition sum facrorizable ifihe particles are"fermions" obeying the pauli exclusion principle (such as neutrinos)?
16.2-4. calculate the heat capacity per mode from the fundamental equation
16.24.

16.2-5. calculate rhe energy per mode from equarion 16.24. what is the leading
term in U(T) in the regions of T = 0 and of T large?
16'2'6' A binary alloy is composed of fr, atoms of type A and of ,&, atoms oftype B. Each A-type atom can exist in its ground staii or in an excited state ofenergy e (all other states are of such high energy that they can be neglected at thetemperatures of interest). F,ach B-type atom similarly can exist in its ground stateof energy zero or in an excited state of energy 2e. Tie system is in equilibrium attemperature Z.
a) Calculate the Helmholtz potential of the sysrem.
b) Calculate the heat capacity of the system.
11.?'7. A paramagnetic salt is composed of 1 mole of noninteracting ions, eachwith a magnetic moment of one Bohr magneton (FB : 9.274 x 10-24joules/tesla). A magnetic field B" is applied along u puiiiJu", direction;
permissible states of the ionic moments are either paraliel or antiparallel to
direction.
a) Assuming the system is maintained at a temperature T:4 K and B. isincreased from 1 Tesla to l0 Tesla, what is the magnitude of the heat transfer
from the thermal reservoir?
b) If the system is now thermally isolated and the applied magnetic field .8" isdecreased from 10 Tesla to 1 Tesla, what is the finar t".rrp"ratrri" of the system?(This process is referred to as cooling by adiabatic demagnetization.l

16.3 INTERNAL MODES IN A GAS

The excitations of the molecules of a gas include the three transrationalmodes of the molecules as a whole, vibiational -oaer, iotutiorrut modes,electronic modes, and modes of excitation of the nucleus. For simplicity

the
this
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we initially assume that each of these modes is independent, later return-
ing to reexamine this assumption. Then the partiti,on sum factors with
respect to the various modes

Z : Z rr-r"Z tibZ rotZ rr"rtZ nu"

and, further, with respect to the molecules

(16.2s)

Zur6 :  z !6 ,  Z ,o r :  z !o , (76.26)

Z , i b :  z i ; u :  ( I  -  e - F a . o ; N (16.27)

and similarly for Zrr"", and Zou".
Th-e "ideality" or "nonideality" of the gas is a property primarily of the

translational partition sum. The translational modes i" airy case warrant a
separate and careful treatment, which we postpone to Settion 16.10. we
now simply assume that any intermoleculai coliisions do not couple to the
internal modes (rotation, vibration, etc.).

The N identical vibrational modes of a given type (one centered on
each molecule) are formally identical to tlie vibriiional modes of the
Einstein model of a- crystal; that is, they are just simple harmonic
oscillators. For a mode of frequency coo

and the contribution of this vibrational mode to the Helmholtz potential
is_as given in equation 16.24 (with 3fr replaced by fi). The contribution
of a vibrational mode to the heat capacity of the gas i. then as shown in
Fig. 15.2 (the ordinate being c/R rather than ,3R). As described in
Section 13.1, the heat capacity "rises in a roughly steplike fashion,' in the
vicinity of. k"T - hro, and it asymptotes to c : R. Figure 13.1 was
plotted as the sum of contributions-from two vibrationa"l modes. with
ot r :  75ar .

The characteristic vibrational temperature ha/k" ranges from several
thousand kelvin for molecules containing very hlhl elerients ( - 6300 K
for Hr) to several hundred kelvin for moleculeJ containing heavier ele-
ments (= 309 K for Brr).

To consider the rotational modes of a gas we focus particularly on
heteronuclear diatomic.molecules (such as HCj, which require two angu-
lar coordinates_to specify their orientation. The rotational energy of srich
heteronuclear diatomic molecules is quantized, with energy eilenvalues
given by

e r :  / ( / +  7 ) e / : 0 , 7 , 2 , . . . (16.28)
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' rhe rorationa partitioi':il;J?H'"fr:i:

z ro. : | (Zf + 7) e- Ft{t+ r)"
/ -O

ii;j,?;:t:#.11n 
b: repraced olr integrar. rhen,.noting thatf(/+ 7), 

---- --"r'atrve of /(/+ 1), and writif;f-.r 
^foi"rn" 

quantitv

k"T
€

(16.2e)

(16.30)
,.ro, = 

f* "
-Bcx 

6ly =
1

B ; =

I It kBT is less than or nf rho a-a^- -n .t *trl.;:,.l"ffi "3::,:F:":d,, jh:,tr *l"j lLffi .;
-"i::n "Ihe 

reader to show that for k"T >>e the average energy is
I Jh" case of homont
!subJect to quantum me(not enter. Only the even
.are. permitted (dependir:
rugn temperaturei this
tum per molecule.


