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THE CANONICAL FORMALISM:
STATISTICAL MECHANICS IN
HELMHOLTZ REPRESENTATION

16-1 THE PROBABILITY DISTRIBUTION

The microcanonical formalism of the preceding chapter is simple in
principle, but it is computationally feasible only for a few highly idealized
models. The combinatorial calculation of the number of ways that a given
amount of energy can be distributed in arbitrarily sized “boxes” is
generally beyond our mathematical capabilities. The solution is to remove
the limitation on the amount of energy available—to consider a system in
contact with a thermal reservoir rather than an isolated system. The
statistical mechanics of a system in contact with a thermal reservoir may
be viewed as statistical mechanics “in Helmholtz representation”; or, in
the parlance of the field, “in canonical formalism.”

States of all energies, from zero to arbitrarily large energies, are avail-
able to a system in contact with a thermal reservoir. But, in contrast to the
state probabilities in a closed system, each state does nor have the same
probability. That is, the system does not spend the same fraction of time
in each state. The key to the canonical formalism is the determination of
the probability distribution of the system among its microstates. And this
problem is solved by the realization that the system plus the reservoir
constitute a closed system, to which the principle of equal probability of
microstates again applies.

A simple analogy is instructive. Consider a set of three dice, one of
which is red (the remaining two being white). The three dice have been
“thrown” many thousands of times. Whenever the sum of the numbers on
the three dice has been 12 (and only then), the number on the red die has
been recorded. In what fraction of these recorded throws has the red die
shown a one, a two,..., a six?
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350 The Canonical Formalism: Statistical Mechanics in Helmholtz Representation

The result, left to the reader, is that the red die has shown a one in % of
the throws, a two in 3,..., a five in £, and a six in 3% of the recorded
throws. The probability of a (red) six, in this restricted set of throws, is .

The red die is the analogue of our system of interest, the white dice
correspond to the reservoir, the numbers shown correspond to the energies
of the respective systems, and the restriction to throws in which the sum is
12 corresponds to the constancy of the total energy (of system plus
IESErvoir).

The probability f; of the subsystem being in state j is equal to the fraction
of the total number of states (of system-plus-reservoir) in which the subsys-
tem is in the state j (with energy E):

Q (E tot Ej)

res

f_ —
< Qtot(E‘tot)

(16.1)

Here E,, is the total energy of the system-plus-reservoir, and @, is
the total number of states of the system-plus-reservoir. The quantity in the
numerator, £, (E, — E;) is the number of states available to the
reservoir when the subsystem is in the state j (leaving energy E,,, — E; in
the reservoir).

This is the seminal relation in the canonical formalism, but it can be
re-expressed in a far more convenient form. The denominator is related to
the entropy of the composite system by equation 15.1. The numerator is
similarly related to the entropy of the reservoir, so that

exp[ rts( Elul E;)]
el exp [kB Stbl(EIm)]

If U is the average value of the energy of the subsystem, then the
additivity of the entropy implies

Stot(Etot) = S(U) st Sres(Etot b U) (163)

Furthermore, expanding S, (E,, — E;) around the equilibrium point
E.—-U

tot

(16.2)

Sres(Etot — E) = Sres( tot U + U E)

J
= Ses(E — U) + (U~ E))/T (16.4)

No additional terms in the expansion appear (this being the very defini-

tion of a reservoir). Inserting these latter two equations in the expression
for f;
_/’

f, = eQ/kaDUU=TSW)}g=/kyTE, (16.5)
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The quantity 1/k,T appears so pervasively throughout the theory that it
is standard practice to adopt the notation

B=1/(kyT) (16.6)

Furthermore U — TS(U) is the Helmholtz potential of the system, so that
we finally achieve the fundamental result for the probability J; of the
subsystem being in the state J

A RE sl ad (16.7)

Of course the Helmholtz potential is not known; it is in fact our task to
compute it. The key to its evaluation is the observation that e?” plays the
role of a state-independent normalization factor in equation 16.7.

Lf=efFyeFE =1 (16.8)
J J

or
e bF=z7 (16.9)
where Z, the “canonical partition sum,” is defined by

Z =) e PE (16.10)

J

We have now formulated a complete algorithm for the calculation of a
Jundamental relation in the canonical Jormalism. Given a list of all states j of
the system, and their energies E;, we calculate the partition sum (16.10). The
partition sum is thus obtained as a function of temperature (or B) and of the
parameters (V, N,, N,,...) that determine the energy levels. Equation 16.9
in turn determines the Helmholtz potential as a function also of T, V, N, N..
This is the sought for fundamental relation.

The entire algorithm is summarized in the relation

~BF=In)Y e 5=1nZ
J

which should be committed to memory.

A corroboration of the consistency of the formalism follows from
recalling that J; is the probability of occupation of the jth state, which
(from equations 16.7, 16.9 and 16.10) can be written in the very useful
form

fi=1ePE/Y ¢ FE (16.11)
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The average energy is then expected to be
U=YEf =Y Ee Ph/y e FE (16.12)
J J i

or
U= —(d/dB)nZ (16.13)

Insertion of equation 16.9, expressing Z in terms of F, and recalling that
B = 1/k,T reduces this equation to the familiar thermodynamic relation
U=F+ TS =F—-T(dF/dT) and thereby confirms its validity. Equa-
tions 16.12 and 16.13 are very useful in statistical mechanics, but it must
be stressed that these equations do not constitute a fundamental relation.
The fundamental relation is given by equations 16.9 and 16.10, giving F
(rather than U) as a function of 8, V, N.

A final observation on units and on formal structure is revealing. The
quantity B is, of course, merely the reciprocal temperature in “natural
units.” The canonical formalism then gives the quantity 8F in terms of j,
V,and N. Thatis, F/T is given as a function of 1/T, ¥, and N. This is a
fundamental equation in the representation S[1/T] (recall Section 5.4). Just
as the microcanonical formalism is naturally expressed in entropy repre-
sentation, the canonical formalism is naturally expressed in S[8] repre-
sentation. The generalized canonical representations to be discussed in
Chapter 17 will similarly all be expressed most naturally in terms of
Massieu functions. Nevertheless we shall conform to universal usage and
refer to the canonical formalism as being based on the Helmholtz poten-
tial. No formal difficulties arise from this slight “misrepresentation.”

PROBLEMS

16.1-1. Show that equation 16.13 is equivalent to U = F + TS.

16.1-2. From the canonical algorithm expressed by equations 16.9 and 16.10,
express the pressure in terms of a derivative of the partition sum. Further, express
the pressure in terms of the derivatives 0 E ,/9V (and of T and the E ;). Can you
give a heuristic interpretation of this equation?

16.1-3. Show that S/k, = B?dF/3p and thereby express S in terms of Z and its
derivatives (with respect to 8).

16.1-4. Show that ¢, = —B(ds/dB), and thereby express ¢, in terms of the
partition sum and its derivatives (with respect to 8).

Answer:
?nZ

¢, = Nk B2
8B YR

v
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16-2 ADDITIVE ENERGIES AND
FACTORIZABILITY OF THE PARTITION SUM

To illustrate the remarkable simplicity of the canonical formalism we
recall the two-state system of Section 15.3. In that model N distinguish-
able “atoms” each were presumed to have two permissible states, of
energies 0 and e. Had we attributed even only three states to each atom
the problem would have become so difficult as to be insoluble by the
microcanonical formalism, at least for general values of the excitation
energies. By the canonical formalism it is simple indeed!

We consider a system composed of N distinguishable “elements,” an
element being an independent (noninteracting) excitation mode of the
system. If the system is composed of noninteracting material constituents,
such as the molecules of an ideal gas, the “elements” refer to the
excitations of the individual molecules. In strongly interacting systems the
elements may be wavelike collective excitations such as vibrational modes
or electromagnetic modes. The identifying characteristic of an “element” is
that the energy of the system is a sum over the energies of the elements,
which are independent and noninteracting.

Each element can exist in a set of orbital states (we henceforth use the
term orbital state to distinguish the states of an element from the states of
the collective system). The energy of the ith element in its jth orbital
state is ¢,;. Each of the elements need not be the same, either in the
energies or the number of its possible orbital states. The total energy of the
system is the sum of the single-element energies, and each element is
permitted to occupy any one of its orbital states independently of the orbital
states of the other elements. Then the partition sum is

7 = E e_B(elj Feg o taggn ko) (1614)
o d5J"

= Z e_Belje—BEZj’e_Beﬂ" élals (1615)
F i

= Ze‘ﬂeuze_ﬂelf‘z,e_ﬂe’f" Lo (16-16)
J 4 7

=2,2y2; - (16.17)
where z,, the “partition sum of the ith element,” is

z; =Y e P (16.18)
J

The partition sum factors. Furthermore the Helmholtz potential is additive
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over elements
—BF=InZ=Inz +Inz, + --- (16.19)

This result is so remarkably simple, powerful, and useful that we em-
phasize again that it applies to any system in which (a) the energy is
additive over elements and (b) each element is permitted to occupy any of
its orbital states independently of the orbital state of any other element.

The “two-state model” of Section 15.3 satisfies the above criteria,
whence

Z=zV=(1+eP)" (16.20)
and
F= —NkzTln(1 + e ) (16.21)

It is left to the reader to demonstrate that this solution is equivalent to
that found in Section 15.3. If the number of orbitals had been three rather
than two, the partition sum per particle z would merely have contained
three terms and the Helmholtz potential would have contained an ad-
ditional term in the argument of the logarithm.

The Einstein model of a crystal (Section 15.2) similarly yields to the
simplicity of the canonical formalism. Here the “elements” are the vibra-
tional modes, and the partition sum per mode is

(o]
z=1+4 e Bl gm2hoo 4 ... = Y pmnBhuw (16.22)
n=0

This “geometric series” sums directly to

i e (16.23)

1 —e¢e - Bhay

There are 3N vibrational modes so that the fundamental equation of the
Einstein model, in the canonical formalism, is

F=~B"Inz* = 3Nk, T In (1 — e ~Fhw) (16.24)

Clearly Einstein’s drastic assumption that all modes of vibration of the
crystal have the same frequency is no longer necessary in this formalism.
A more physically reasonable approximation, due to P. Debye, will be
discussed in Section 16.7.
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PROBLEMS

16.2-1. Consider a system of three particles, each different. The first particle has
two orbital states, of energies ¢, and €. The second particle has permissible
energies &, and &,,, and the third particle has permissible energies ¢, and es,.
Write the partition sum explicitly in the form of equation 16.14, and by explicit
algebra, factor it in the form of equation 16.17.

16.2-2. Show that for the two-level system the Helmholtz potential calculated in
equation 16.21 is equivalent to the fundamental equation found in Section 15.3.

16.2-3. Is the energy additive over the particles of a gas if the particles are
uncharged mass points (with negligible gravitational interaction)? Is the partition
sum factorizable if half the particles carry a positive electric charge and half carry
a negative electric charge? Is the partition sum factorizable if the particles are
“fermions™ obeying the Pauli exclusion principle (such as neutrinos)?

16.2-4. Calculate the heat capacity per mode from the fundamental equation
16.24.

16.2-5. Calculate the energy per mode from equation 16.24. What is the leading
term in U(T') in the regions of 7 = 0 and of T large?

16.2-6. A binary alloy is composed of N 4 atoms of type 4 and of N, atoms of
type B. Each A-type atom can exist in its ground state or in an excited state of
energy & (all other states are of such high energy that they can be neglected at the
temperatures of interest). Each B-type atom similarly can exist in its ground state
of energy zero or in an excited state of energy 2e. The system is in equilibrium at
temperature 7.

a) Calculate the Helmholtz potential of the system.

b) Calculate the heat capacity of the system.

16.2-7. A paramagnetic salt is composed of 1 mole of noninteracting ions, each
with a magnetic moment of one Bohr magneton (pp = 9274 x 10~
Joules/tesla). A magnetic field B, is applied along a particular direction; the
permissible states of the ionic moments are either parallel or antiparallel to this
direction.

a) Assuming the system is maintained at a temperature T =4 K and B, is
increased from 1 Tesla to 10 Tesla, what is the magnitude of the heat transfer
from the thermal reservoir?

b) If the system is now thermally isolated and the applied magnetic field B, is
decreased from 10 Tesla to 1 Tesla, what is the final temperature of the system?
(This process is referred to as cooling by adiabatic demagnetization.)

16-3 INTERNAL MODES IN A GAS

The excitations of the molecules of a gas include the three translational
modes of the molecules as a whole, vibrational modes, rotational modes,
electronic modes, and modes of excitation of the nucleus. For simplicity
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we initially assume that each of these modes is independent, later return-
ing to reexamine this assumption. Then the partition sum factors with
respect to the various modes

et Z A DT

trans

rotZelethnuc (1625)

and, further, with respect to the molecules

Zvib = Z\[Zb’ Zrot = Zrhc/)t (1626)
and similarly for Z ., and Z_,.

The “ideality” or “nonideality” of the gas is a property primarily of the
translational partition sum. The translational modes in any case warrant a
separate and careful treatment, which we postpone to Section 16.10. We
now simply assume that any intermolecular collisions do not couple to the
internal modes (rotation, vibration, etc.).

The N identical vibrational modes of a given type (one centered on
each molecule) are formally identical to the vibrational modes of the
Einstein model of a crystal; that is, they are just simple harmonic
oscillators. For a mode of frequency w,

Zygy = 20y = (1 — e~ Fhu) ™" (16.27)

and the contribution of this vibrational mode to the Helmholtz potential
is as given in equation 16.24 (with 3N replaced by N). The contribution
of a vibrational mode to the heat capacity of the gas is then as shown in
Fig. 15.2 (the ordinate being c¢/R rather than ¢/3R). As described in
Section 13.1, the heat capacity “rises in a roughly steplike fashion” in the
vicinity of kzT = hw,, and it asymptotes to ¢ = R. Figure 13.1 was
plotted as the sum of contributions from two vibrational modes, with
w, = 15w,.

The characteristic vibrational temperature hwy/k, ranges from several
thousand kelvin for molecules containing very light elements (= 6300 K
for H,) to several hundred kelvin for molecules containing heavier ele-
ments (= 309 K for Br,).

To consider the rotational modes of a gas we focus particularly on
heteronuclear diatomic molecules (such as HCI), which require two angu-
lar coordinates to specify their orientation. The rotational energy of such
heteronuclear diatomic molecules is quantized, with energy eigenvalues
given by

e,=¢(f+ e ¢=0,1,2,... (16.28)
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Each energy level is (2¢ + 1)-fold degenerate. The €nergy unit g i
s’/ (moment of inertia), or approximately 2 x 102
molecule. The characteristic Separation between leve
which corresponds to a temperature e/kp=15 K
lighter molecules and smaller for heavier molecules.
* The rotational partition sum per molecule is

8 equal to
J for the H(y
Is is of the order of g,

for HCl—Jarger for

Zrot = X (224 1) e Bttt (16.29)
=0

If kyT > ¢ the Sum can be replaced by an integral. Then, noting that
2+ 1 is the derivative of £(£+ 1), a

nd writing x for the quantity
£+ 1),
o0 1 k
Bex — = \B
2= /0‘ ST X ; (16.30)

| The case of homonuclear diatomic molecules, such as O, or H,, is
-’subject t0 quantum mechanica] Symmetry conditions into which we shal]
hot enter. Only the even terms in the partition Sum, or only the odd terms.
are permitted (depending upon detailed characteristics of ¢
igh temperatures this restriction merely halves the rotat

sum per molecuyle.
he nuclear and electronic contri

fashion, but generally only the lowest energy levels of each contribute.

Then Znye 18 simply the “degeneracy” (muitipﬁcity) of the lowest energy
configuration. Each of these factors simply contributes NkyT In (mult;-
plicity) to the Helmholtz potential.

t is of interest to return to the assumption that the v
independent. This assumption is generally a good (bu

tively independent
of the vibrations.




