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STATISTICAL MECHANICS IN THE
ENTROPY REPRESENTATION: THE
MICROCANONICAL FORMALISM

15-1 PHYSICAL SIGNIFICANCE OF
THE ENTROPY FOR CLOSED SYSTEMS

Thermodynamics constitutes a powerful formalism of great generality,
erected on a basis of a very few, very simple hypotheses. The central
concept introduced through those hypotheses is the entropy. It enters the
formulation abstractly as the variational function in a mathematical
extremum principle determining equilibrium states. In the resultant for-
malism, however, the entropy is one of a set of extensive parameters,
together with the energy, volume, mole numbers and magnetic moment.
As these latter quantities each have clear and fundamental physical
interpretations it would be strange indeed if the entropy alone were to be
exempt from physical interpretation.

The subject of statistical mechanics provides the physical interpretation
of the entropy, and it accordingly provides a heuristic justification for the
extremum principle of thermodynamics. For some simple systems, for
which we have tractable models, this interpretation also permits explicit
calculation of the entropy and thence of the fundamental equation.

We focus first on a closed system of given volume and given number of
particles. For definiteness we may think of a fluid, but this is in no way
necessary. The parameters U, V, and N are the only constraints on the
system. Quantum mechanics tells us that, if the system is macroscopic,
there may exist many discrete quantum states consistent with the specified
values of U, V, and N. The system may be in any of these permissible
states.

Naively we might expect that the system, finding itself in a particular
quantum state, would remain forever in that state. Such, in fact, is the lore
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330 Statistical Mechanics in Entropy Representation

of elementary quantum mechanics; the “quantum numbers” that specify a
particular quantum state are ostensibly “constants of the motion.” This
naive fiction, relatively harmless to the understanding of atomic systems
(to which quantum mechanics is most commonly applied) is flagrantly
misleading when applied to macroscopic systems.

The apparent paradox is seated in the assumption of isolation of a
physical system. No physical system is, or ever can be, truly isolated. There
exist weak, long-range, random gravitational, electromagnetic and other
forces that permeate all physical space. These forces not only couple
spatially separated material systems, but the force fields themselves con-
stitute physical systems in direct interaction with the system of interest.
The very vacuum is now understood to be a complex fluctuating entity in
which occur continual elaborate processes of creation and reabsorption of
electrons, positrons, neutrinos, and a myriad of other esoteric subatomic
entities. All of these events can couple with the system of interest.

For a simple system such as a hydrogen atom in space the very weak
interactions to which we have alluded seldom induce transitions between
quantum states. This is so because the quantum states of the hydrogen
atom are widely spaced in energy, and the weak random fields in space
cannot easily transfer such large energy differences to or from the atom.
Even so, such interactions occassionally do occur. An excited atom may
“spontaneously” emit a photon, decaying to a lower energy state. Quan-
tum field theory reveals that such ostensibly “spontaneous” transitions
actually are induced by the interactions between the excited atom and the
modes of the vacuum. The quantum states of atoms are not infinitely long
lived, precisely because of their interaction with the random modes of the
vacuum.

For a macroscopic system the energy differences between successive
quantum states become minute. In a macroscopic assembly of atoms each
energy eigenstate of a single atom “splits” into some 10> energy eigen-
states of the assembly, so that the average energy difference between
successive states is decreased by a factor of ~ 10~%. The slightest
random field, or the weakest coupling to vacuum fluctuations, is then
sufficient to buffet the system chaotically from quantum state to quantum
state.

A realistic view of a macroscopic system is one in which the system makes
enormously rapid random transitions among its quantum states. A macro-
scopic measurement senses only an average of the properties of myriads of
quantum states.

All “statistical mechanicians” agree with the preceding paragraph, but
not all would agree on the dominant mechanism for inducing transitions.
Various mechanisms compete and others may well dominate in some or
even in all systems. No matter—it is sufficient that any mechanism exists,
and it is only the conclusion of rapid, random transitions that is needed to
validate statistical mechanical theory.
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Because the transitions are induced by purely random processes, it is
reasonable to suppose that a macroscopic system samples every permissible
quantum state with equal probability—a permissible quantum state being
one consistent with the external constraints.

The assumption of equal probability of all permissible microstates is the
fundamental postulate of statistical mechanics. Its justification will be
examined more deeply in Part III, but for now we adopt it on two bases;
its a priori reasonableness, and the success of the theory that flows from it.

Suppose now that some external constraint is removed—such as the
opening of a valve permitting the system to expand into a larger volume.
From the microphysical point of view the removal of the constraint
activates the possibility of many microstates that previously had been
precluded. Transitions occur into these newly available states. After some
time the system will have lost all distinction between the original and the
newly available states, and the system will thenceforth make random
transitions that sample the augmented set of states with equal probability.
The number of microstates among which the system undergoes transitions,
and which thereby share uniform probability of occupation, increases to the
maximum permitted by the imposed constraints.

This statement is strikingly reminiscent of the entropy postulate of
thermodynamics, according to which the entropy increases to the maxi-
mum permitted by the imposed constraints. It suggests that the entropy
can be identified with the number of microstates consistent with the
imposed macroscopic constraints.

One difficulty arises: The entropy is additive (extensive), whereas the
number of microstates is multiplicative. The number of microstates availa-
ble to two systems is the product of the numbers available to each (the
number of “microstates” of two dice is 6 X 6 = 36). To interpret the
entropy, then, we require an additive quantity that measures the number
of microstates available to a system. The (unique!) answer is to identify the
entropy with the logarithm of the number of available microstates (the
logarithm of a product being the sum of the logarithms). Thus

S = kyln@ (15.1)

where { is the number of microstates consistent with the macroscopic
constraints. The constant prefactor merely determines the scale of S; it is
chosen to obtain agreement with the Kelvin scale of temperature, defined
by T~ = 4S/6U. We shall see that this agreement is achieved by taking the
constant to be Boltzmann’s constant k, = R/N, = 1.3807 x 10~%J /K.
With the definition 15.1 the basis of statistical mechanics is established.
Just as the thermodynamic postulates were elaborated through the
formalism of Legendre transformations, so this single additional postulate
will be rendered more powerful by an analogous structure of mathemati-
cal formalism. Nevertheless this single postulate is dramatic in its brevity,
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simplicity, and completeness. The statistical mechanical formalism that
derives directly from it is one in which we “simply” calculate the loga-
rithm of the number of states available to the system, thereby obtaining S
as a function of the constraints U, ¥, and N. That is, it is statistical
mechanics in the entropy representation, or, in the parlance of the field, it
1s statistical mechanics in the microcanonical formalism.

In the following sections of this chapter we treat a number of systems
by this microcanonical formalism as examples of its logical completeness.

As in thermodynamics, the entropy representation is not always the
most convenient representation. For statistical mechanical calculations it
is frequently so inconvenient that it is analytically intractable. The
Legendre transformed representations are usually far preferable, and we
shall turn to them in the next chapter. Nevertheless the microcanonical
formulation establishes the clear and basic logical foundation of statistical
mechanics.

PROBLEMS

15.1-1. A system is composed of two harmonic oscillators each of natural
frequency w, and each having permissible energies (n + 3)hw,, where n is any
non-negative integer. The total energy of the system is E’ = n’hw,, where n’ is a
positive integer. How many microstates are available to the system? What is the
entropy of the system?

A second system is also composed of two harmonic oscillators, each of natural
frequency 2w,. The total energy of this system is E” = n"hw,, where n” is an
even integer. How many microstates are available to this system? What is the
entropy of this system?

What is the entropy of the system composed of the two preceding subsystems
(separated and enclosed by a totally restrictive wall)? Express the entropy as a
function of E’ and E”.

Answer:
E'E" )

Sml = kBln( 2—}1%,_3

15.1-2. A system is composed of two harmonic oscillators of natural frequencies
wy and 2w,, respectively. If the system has total energy E = (n + 3)hw,, where n
is an odd integer, what is the entropy of the system?

If a composite system is composed of two non-interacting subsystems of the
type just described, having energies E, and E,, what is the entropy of the compo-
site system?
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15-2 THE EINSTEIN MODEL
OF A CRYSTALLINE SOLID

With a identification of the meaning of the entropy we proceed to
calculate the fundamental equation of macroscopic systems. We first
apply the method to Einstein’s simplified model of a nonmetallic crystal-
line solid.

It is well to pause immediately and to comment on so early an
introduction of a specific model system. In the eleven chapters of this
book devoted to thermodynamic theory there were few references to
specific model systems, and those occasional references were kept care-
fully distinct from the logical flow of the general theory. In statistical me-
chanics we almost immediately introduce a model system, and this will be
followed by a considerable number of others. The difference is partially a
matter of convention. To some extent it reflects the simplicity of the
general formalism of statistical mechanics, which merely adds the logical
interpretation of the entropy to the formalism of thermodynamics; the
interest therefore shifts to applications of that formalism, which underlies
the various material sciences (such as solid state physics, the theory of
liquids, polymer physics, and the like). But, most important, it reflects the
fact that counting the number of states available to physical systems
requires computational skills and experience that can be developed only
by explicit application to concrete problems.

To account for the thermal properties of crystals, Albert Einstein, in
1907, introduced a highly idealized model focusing only on the vibrational
modes of the crystal. Electronic excitations, nuclear modes, and various
other types of excitations were ignored. Nevertheless, for temperatures
that are neither very close to absolute zero nor very high, the model is at
least qualitatively successful. 0

Einstein’s model consists of the assumption that each of the N atoms in
the crystal can be considered to be bound to its equilibrium position by a
harmonic force. Each atom is free to vibrate around its equilibrium
position in any of the three coordinate directions, with a natural frequency
AV

More realistically (recall Section 1.2) the atoms of crystals are harmoni-
cally bound to their neighboring atoms rather than to fixed points.
Accordingly the vibrational modes are strongly coupled, giving rise to 3N
collective normal modes. The frequencies are distributed from zero (for
very long wave length modes) to some maximum frequency (for the modes
of minimum permissible wave length, comparable to the interatomic
distance). There are far more high frequency modes than low frequency
modes, with the consequence that the frequencies tend to cluster mainly in
a narrow range of frequencies, to which the Einstein frequency w, is a
rough approximation.
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In the Einstein model, then, a crystal of N atoms is replaced by 3N
harmonic oscillators, all with the same natural frequency w,.

For the present purposes it is convenient to choose the zero of energy so
that the energy of a harmonic oscillator of natural frequency w, can take
only the discrete values nkw,, with n = 0,1,2,3,... . Here h = h/27 =
1.055 X 107°* J-s., h being Planck’s constant.

In the language of quantum mechanics, each oscillator can be “oc-
cupied by an integral number of energy quanta,” each of energy hw,.

The number of possible states of the system, and hence the entropy, can
now be computed easily. If the energy of the system is U it can be
considered as constituting U/ %iw, quanta. These quanta are to be distrib-
uted among 3N vibrational modes. The number of ways of distributing
the U/hw, quanta among the 3N modes is the number of states
available to the system.

The problem is isomorphic to the calculation of the number of ways of
placing U/hw, identical (indistinguishable) marbles in 3N numbered
(distinguishable) boxes.

ooonooﬂﬂoﬂo ----- Uooonoo

FIGURE 15.1
Illustrating the combinatorial problem of distributing U/#«w, indistinguishable objects
(“marbles”) in 3N distinguishable “boxes.”

The combinatorial problem can be visualized as follows. Suppose we
have U/hw, marbles and 3N — 1 match sticks. We lay these out in a
linear array, in any order. One such array is shown in Fig. 15.1. The
interpretation of this array is that three quanta (marbles) are assigned to
the first mode, two quanta to the second, none to the third, and so forth,
and two quanta are assigned to the last mode (the 3N-th). Thus the
number of ways of distributing the U/Aw, quanta among the 3N modes is
the number of permutations of (3N — 1 + U/hw,) objects, of which
U/hw, are identical (marbles or quanta), and 3N — 1 are identical (match
sticks). That is

_ (BN =1+ U/hwy)! (3N + U/hay)!

iy (BN - D (U/hw,)!  (BN)(U/hw,)!

(15.2)

This completes the calculation, for the entropy is simply the logarithm of
this quantity (multiplied by k,). To simplify the result we employ the
Stirling approximation for the logarithm of the factorial of a large number

In(M)=MInM~—- M+ - (if M > 1) (15.3)
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whence the molar entropy is

s=3R ln(l + 1) T 3R11n(1 i ﬂ) (15.4)
where
uy = 3N, hes, (15.5)

This is the fundamental equation of the system.

It will be left to the problems to show that the fundamental equation
implies reasonable thermal behavior. The molar heat capacity is zero at
zero temperature, rises rapidly with increasing temperature, and ap-
proaches a constant value (3R) at high temperature, in qualitative
agreement with experiment. The rate of increase of the heat capacity is not
quantitatively correct because of the naiveté of the model of the vibra-
tional modes. This will be improved subsequently in the “Debye model”
(Section 16.7), in which the vibrational modes are treated more realisti-
cally.

The heat capacity of the Einstein model is plotted in Fig. 15.2. The
molar heat capacity ¢, is zero at T = 0, and it asymptotes to 3R at high
temperature. The rise in ¢, occurs in the region kyT = 3kiw, (in partlcular

¢,/3R =i and the point of maximum slope both occur near k;7/hiw, = 3). At
low temperature c, rises exponentially, whereas experimentally the heat
capacity rises approx1mately as T°.

The mechanical implications of the model—the pressure—volume rela-
tionship and compressibility—are completely unreasonable. The entropy,
according to equation 15.5, is independent of the volume, whence the
pressure 74S/dV is identically zero! Such a nonphysical result is, of
course, a reflection of the naive omission of volume dependent effects
from the model.

Certain consequences of the model give important general insights.
Consider the thermal equation of state

1 s niiksh IN
7= 30~ 51 —U—NAhwo) (15.6)

Now, noting that there are 3NN, oscillators in the system

y i 3G hay
mean energy per oscillator = NN, ~ ghev/keT — 1 (15.7)

The quantity Awy/k; is called the “Einstein temperature” of the crystal,
and it generally is of the same order of magnitude as the melting
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FIGURE 15.2

Heat capacity of the Einstein model, or of a single harmonic oscillator. The upper curve
refers to the upper scale of kT/hw,, and the lower curve to the lower (expanded) scale. The
ordinate can be interpreted as the heat capacity of one harmonic oscillator in units of k B
or as the molar heat capacity in units of 3R.

temperature of the solid. Thus below the melting temperature, the mean
energy of an oscillator is less than, or of the order of, Aw,. Alternatively
stated, the solid melts before the Einstein oscillators attain quantum
numbers appreciably greater than unity.

PROBLEMS

15.2-1. Calculate the molar heat capacity of the Einstein model by equation 15.7.
Show that the molar heat capacity approaches 3R at high temperatures. Show
that the temperature dependence of the molar heat capacity is exponential near
zero temperature, and calculate the leading exponential term.

15.2-2. Obtain an equation for the mean quantum number 7 of an Einstein
oscillator as a function of the temperature. Calculate 7 for k,T/hw,=
0,1,2,3,4,10, 50,100 (ignore the physical reality of melting of the crystal?).
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15.2-3. Assume that the Einstein frequency w, for a particular crystal depends
upon the molar volume:

Wy = Wy — Aln(v%)

a) Calculate the isothermal compressibility of this crystal.
b) Calculate the heat transfer if a crystal (of one mole) is compressed at
constant temperature from v, to vy.

15-3 THE TWO-STATE SYSTEM

Another model that illustrates the principles of statistical mechanics in
a simple and transparent fashion is the “two-state model.” In this model
each “atom” can be either in its “ground state” (with energy zero) or in its
“excited state” (with energy ¢).

To avoid conflict with certain general theorems about energy spectra we
assume that each atom has additional states, but all of such high energy as
to exceed the total energy of the system under consideration. Such states
are then inaccessible to the system and need not be considered further in
the calculation.

If U is the energy of the system then U/e atoms are in the excited state
and (N — U/e) atoms are in the ground state. The number of ways of
choosing U/¢ atoms from the total number N is

N!
¥ (U/e){(N — Uye)! e,

The entropy is therefore

S = kpIn® = k,In(#1) - kBln(?U!) - kBln[(N s —E—U)v] (15.9)

or, invoking Stirling’s approximation (equation 15.3)

b= = U U U
S = (:—N)kBln(l —E) “?kBlnN—E (15.10)
Again, because of the artificiality of the model, the fundamental equa-
tion is independent of the volume. The thermal equation of state is easily
calculated to be

1- ﬁln(]—"ﬁ - 1) (15.11)
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Recalling that the calculation is subject to the condition U < Ne, we
observe that the temperature is a properly positive number. Solving for
the energy

Ne
e (15.12)
The energy approaches Ne/2 as the temperature approaches infinity in
this model (although we must recall that additional states of high energy
would alter the high temperature properties). At infinite temperature half
the atoms are excited and half are in their ground state.

The molar heat capacity is

- _dﬁ - N &2 ee/kBT
. o OB v kpT? (1 + e*aT)?

2
=N € (ee/ZkBT+ e—s/ZkBT)—Z
A

kT
(15.13)

A graph of this temperature dependence is shown in Fig 15.3. The molar
heat capacity is zero both at very low temperatures and at very high
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FIGURE 15.3

Heat capacity of the two-state model; the “Schottky hump.”




A Polymer Model—The Rubber Band Revisited 339

temperatures, peaking in the region of k;T = .42¢. This behavior is known
as a “Schottky hump.” Such a maximum, when observed in empirical
data, is taken as an indication of a pair of low lying energy states, with all
other energy states lying at considerably higher energies. This is an
example of the way in which thermal properties can reveal information
about the atomic structure of materials.

PROBLEMS

’
15.3-1. In the two-state model system of this section suppose the excited state
energy € of an “atom” depends on its average distance from its neighboring
atoms so that

™
I
<
il
z|<

where a and y are positive constants. This assumption, applied to a somewhat
more sophisticated model of a solid, was introduced by Gruneisen, and v is the
“Gruneisen parameter.” Calculate the pressure P as a function of & and 7.

Answer:

P = Lo (eo/kam™ 4 1)1
1

15-4 A POLYMER MODEL—THE RUBBER BAND REVISITED

There exists another model of appealing simplicity that is euphemisti-
cally referred to as a “polymer model.” Its connection with a real polymer
is tenuous, but that connection is perhaps close enough to serve the
pedagogical purpose of providing some sense of physical reality while
again illustrating the basic algorithm of statistical mechanics. And in
particular the model provides an insight to the behavior of a “rubber
band,” as discussed on purely phenomenological grounds in Section 3.7.
As we saw in that section the extensive parameter of interest, which
replaces the volume, is the length; the corresponding intensive parameter,
analogous to the pressure, is the tension. We are interested in the equation
of state relating tension to length and temperature.

The “rubber band” can be visualized as a bundle of long chain
polymers. Each polymer chain is considered to be composed of N mono-
mer units each of length a, and we focus our attention on one particular
polymer chain in the bundle. One end of the polymer chain is fixed at a
point that is taken as the origin of coordinates. The other end of the chain
is subject to an externally applied tension J, parallel to the positive
x-axis (Fig. 15.4).
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FIGURE 15.4

“@olymer” model. The string should be much longer than shown, so that the end of th
polymer is free to move in the y-direction, and the applied tension 7 is directed along tl
x-direction.

In the polymer model each monomer unit of the chain is permitted to
lie either parallel or antiparallel to the x-axis, and zero energy is associ
ated with these two orientations. Each monomer unit has the additiona
possibility of lying perpendicular to the x-axis, in the +y or —y direc-
tions only. Such a “perpendicular” monomer unit presumably suffer
interference with other polymer chains in the bundle; we represent thi.
interference by assigning a positive energy e to such a perpendiculas
monomer.

A somewhat more reasonable model of the polymer might permit the
perpendicular monomers to lie along the 1z directions as well as alon;
the +y directions, and, more importantly, would account for the inter-
ference of a chain doubling back on itself. Such models complicate the
analysis without adding to the pedagogic clarity or qualitative content of
the result.

We calculate the entropy S of one polymer chain as a function of the
energy U = U’e, of the coordinates L, and L, of the end of the polyme:
chain, and of the number N of monomer units in the chain.

Let N, and N, be the numbers of monomers along the +x and —x
directions respectively, and similarly for N,* and N, . Then

NS+ N +N'+N7 =N

vz
Ny -N ===
a
N+—N_—£2=L’
y =L
i = U ’
N_v +Ny =:EU (15.14)
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from which we find

N =N -U+L)

N =3(N-U-L)

N =4(v + L)

N, =3(v - L) (15.15)

The number of configurations of the polymer consistent with given
coordjnates L, and L, of its terminus, and with given energy U, is
N!

FIN—INTIN -

NJINJINTINT!

e(U,L,,L,N)= (15.16)

The entropy is, then, using the Stirling approximation (equation 15.3)
S =kylnQ = NkyIn N — Nfkgln N — N k,In N,
~N}kgn N — Ny kgl Ny (15.17)
or
S = Nkgln N = (N — U’ + L, )kpIn[3(N - U’ + L})]

~

(N = U = L)kyin[3(F - v - L]

o=

— (U + L) kyln[3(U + Ly)]
— (U’ - L) kyn[3(U - L) (15.18)

With the statistical mechanical phase of the calculation completed, the
thermodynamic formalism comes into play. The y-component of the
tension J, is conjugate to the extensive coordinate L, (see Problem
15.4-1). Setting 7, = 0 gives

A U - L
iy Rl In—2=0 (15.19)
ail] Bt it

t

G

[\ ]

5y
from which we conclude (as expected) that

L=L=0 (15.20)
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Similarly
I, S ky N-U-L,
T 9L, 2alnm (15.21)
and
1 _ aS _ kB -~ 7 y kB -~ ’ ’ kB ’
B = 5eIn(N + L, - U') + 5eIn(N - L, - U) - —InU
(15.22)
| ]
or
N-U) -L?
e2¢/ksT = ( ) x (15.23)

Ur2

This is the “thermal equation of state.” The “mechanical equation of
state” (15.21) can be written in an analogous exponential form

N-U-L,
N =TS

-29.a/ksT _

e (15.24)

The two preceding equations are the equations of state in the entropy
representation, and accordingly they involve the energy U’. That is not
generally convenient. We proceed, then, to eliminate U’ between the two
equations. With some algebra we find (see Problem 15.4-2) that

ok sinh(Z,a/k,T)
N cosh(T.a/k,T) + e=*/*sT

(15.25)

For small J_ a (relative to kzT) the equation can be expanded to first
order

I.Na? 1

L,= kyT 1+ e okl +

(15.26)

The modulus of elasticity of the rubber band (the analogue of the
compressibility —1/V(dV/dP);) is, for small 7,

1 /(0L ) a? _ _
= X - 1 + e s/kET) 1 15.27
N( 37, ), = Ty " (15:27)
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The fact that this elastic modulus decreases with increasing temperature
(or that the “stiffness” increases) is in dramatic contrast to the behavior of
a spring or of a stretched wire. The behavior of the polymer is sometimes
compared to the behavior of a snake; if we grasp a snake by the head and
tail and attempt to stretch it straight the resistance is attributable to the
writhing activity of the snake. The snake, in its writhing, assumes all
possible configurations, and more configurations are accessible if the two
ends are not greatly distant from each other. At low temperatures the
rubber band is like a torpid snake. At high temperatures the number of
configurations available, and the rate of transitions among them, is
greater, resulting in a greater contractive tension. It is the entropy of the
snake and of the rubber band that is responsible for the tendency of the
endy to draw together!

The behavior described is qualitatively similar to that of the simple
phenomenological model of Section 3.7. But compared to a truly realistic
model of a rubber band, both models are extremely naive.

PROBLEMS

15.4-1. Is the sign correct in equation 15.19? Explain.

15.4-2. Eliminate U/e between equations 15.23 and 15.24 and show that the
formal solution is equation 15.25 with a + sign before the second term in the
denominator. Consider the qualitative dependence of L _/Na on &, and show that
physical reasoning rejects the negative sign in the denominator, thus validating

equation 15.25.

15.4-3. A rubber band consisting of n polymer chains is stretched from zero
length to its full extension (L = Na) at constant temperature T. Does the energy
of the system increase or decrease? Calculate the work done on the system and the
heat transfer to the system.

15.4-4. Calculate the heat capacity at constant length for a “rubber band”
consisting of n polymer chains. Express the answer in terms of T and L,.

15.4-5. Calculate the “coefficient of longitudinal thermal expansion” defined by
Skt ailindilg
fan L_x( T )9;
Express «7 as a function of T and sketch the qualitative behavior. Compare this
with the behavior of a metallic wire and discuss the result.

15-5 COUNTING TECHNIQUES AND THEIR
CIRCUMVENTION; HIGH DIMENSIONALITY

To repeat, the basic algorithm of statistical mechanics consists of
counting the number of states consistent with the constraints imposed; the
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entropy is then the product of Boltzmann’s constant and the logarithm of
the permissible number of states.

Unfortunately counting problems tend to require difficult and sophisti-
cated techniques of combinatorial mathematics (if they can be done at
all!) In fact only a few highly artificial, idealized models permit explicit
solution of the counting problem, even with the full armamentarium of
combinatorial theory. If statistical mechanics is to be a useful and
practical science it is necessary that the difficulties of the counting
problem somehow be circumvented. One method of simplifying the count-
ing problem is developed in this section. It is based on certain rather
startling properties of systems of “high dimensionality” —a concept to be
defined shortly. The method is admittedly more important for the insights
it provides to the behavior of complex systems than for the aid it provides
in practical calculations. More general and powerful methods of
circumventing the counting problem are based on a transfer from thermo-
dynamics to statistical mechanics of the technique of Legendre transfor-
mations. That transfer will be developed in the following chapters.

For now we turn our attention to the simplifying effects of high
dimensionality, a concept that can best be introduced in terms of an
explicit model. We choose the simplest model with which we are already
familiar— the Einstein model. 5

Recall that the Einstein solid is a collection of N atoms, each of which
is to be associated with three harmonic oscillators (corresponding to the
oscillations of the atom along the x, y, and z axes). A quantum state of
the system is specified by the 3N quantum numbers ny, n,, n,,..., 14y,
and the energy of the system is

3N
U(ny,ny,...onsg) = 2 nho, (15.28)
j=1

Each such state can be represented by a “point,” with coordinates
Ny, My, N, ..., Nag, in a 3N-dimensional “state space.” Only points with
positive integral coordinates are permissible, corresponding to the dis-
creteness or “quantization” of states in quantum mechanics. It is to be
stressed that a single point represents the quantum state of the entire
crystal.

The locus of states with a given energy U is a “diagonal” hyperplane
with intercepts U/hw, on each of the 3N coordinate axes (Fig. 15.5). All
states lying “inside” the plane (i.e., closer to the origin) have energies less
than U, and all states lying outside the plane, further from the origin, have
energies greater than U.

The first critical observation which is called to our attention by Fig.
15.5 is that an arbitrary “diagonal plane,” corresponding to an arbitrary
energy U, will generally pass through none of the discrete coordinate
points in the space! That is, an arbitrarily selected number U generally
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FIGURE 15.5

Quantum state space for the Einstein solid. The three-dimensional state space shown is for
an Einstein solid composed of a single atom. Each additional atom would increase the
dimensionality of the space by three. The hyperplane U has intercepts U/Aw, on all axes.
There is one state for each unit of hypervolume, and (neglecting surface corrections) the
number of states with energy less than U is equal to the volume inside the diagonal
hyperplane U.

cannot be represented in the form of equation 15.28, such a decomposi-
tion being possible only if U/hw, is an integer.

More generally, if we inquire as to the number of quantum states of a
system with an arbitrarily chosen and mathematically precise energy, we
almost always find zero. But such a question is unphysical. As we have
stressed previously the random interactions of every system with its
environment make the energy slightly imprecise. Furthermore we never
know (and cannot measure) the energy of any system with absolute
precision.

The entropy is not the logarithm of the number of quantum states that lie
on the diagonal hyperplane U of Fig. 15.5, but rather it is the logarithm of
the number of quantum states that lie in the close vicinity of the diagonal
hyperplane.

This consideration leads us to study the number of states between two
hyperplanes: U and U — A. The energy separation A is determined by the
mmprecision of the energy of the macroscopic system. That imprecision
may be thought of as a consequence either of environmental interactions
or of imprecision in the preparation (measurement) of the system.

The remarkable consequence of high dimensionality is that the volume
between the two planes (U — A and U), and hence the entropy, is essentially
independent of the separation A of the planes!
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This result is (at first) so startlingly counter-intuitive, and so fundamen-
tal, that it warrants careful analysis and discussion. We shall first corrobo-
rate the assertion on the basis of the geometrical representation of the
states of the Einstein solid. Then we shall reexamine the geometrical
representation to obtain a heuristic understanding of the general geometri-
cal basis of the effect. _

The number of states 2(U) with energies less than (or equal to) a given
value U is equal to the hypervolume lying “inside” the diagonal hyper-
plane U. This hypervolume is (see problem 15.5-1)

£(U) = (number of states with energies less than U)

o o R R
_W( hwo) (15.29)

The fact that this result is proportional to U>Y, where 3N is the dimen-
sionality of the “state space,” is the critical feature of this result. The
precise form of the coefficient in equation 15.29 will prove to be of only
secondary importance.

By subtraction we find the number of states with energies between
U— A and U to be

or

But (1 — A/U) is less than unity; raising this quantity to an exponent
3N = 10% results in a totally negligible quantity (see Problem 15.5-2), so
that

QU)=QU)-UU-A) =Q(U) (15.31)

That is, the number £(U) of states with energies between U — A and U is
essentially equal to the total number Q(U) of states with energies less
than U—and this result is essentially independent of A!

Thus having corroborated the assertion for our particular model, let us
reexamine the geometry to discern the more general geometrical roots of
this strange, but enormously useful, result.

The physical volume in Fig. 15.5 can be looked at as one eighth of a
regular octahedron (but only the portion of the octahedron in the physical
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octant of the space has physical meaning). With higher dimensionality the
regular polyhedron would become more nearly “spherical.” The dimen-
sionless energy U/hw, is analogous to the “radius” of the figure, being
the distance from the origin to any of the corners of the polyhedron. This
viewpoint makes evident the fact (equation 15.29) that the volume is
proportional to the radius raised to a power equal to the dimensionality of
the space (r? in two dimensions, > in three, etc.). The volume between
two concentric polyhedra, with a difference in radii of dr, is dV =
(V' /dr) dr. The ratio of the volume of this “shell” to the total volume is

dv oV dr
7 = '5' ? (15.32)
or, if V’= A,r"
dv ar
—V' = n—r— (15.33)

If we take n = 10** we find dV/V = 0.1 only if dr/r = 10~ For dr/r
greater than ~ 10”2 the equation fails, telling us that the use of
differentials is no longer valid. The failure of the differential analysis is
evidence that dV/V already becomes on the order of unity for values of
dr/r as small as dr/r = 10~ %,

In an imaginary world of high dimersionality there would be an
automatic and perpetual potato famine, for the skin of a potato would
occupy essentially its entire volume!

In the real world in which three-dimensional statistical mechanicians
calculate entropies as volumes in many-dimensional state spaces, the
properties of high dimensionality are a blessing. We need not calculate the
number of states “in the vicinity of the system energy U ”—it is quite as
satisfactory, and frequently easier, to calculate the number of states with
energies less than or equal to the energy of the physical system.

Returning to the Einstein solid, we can calculate the fundamental
equation using the result 15.29 for Q(U), the number of states with
energies less than U; the entropy is S = kzInQ(U), and it is easily
corroborated that this gives the same result as was obtained in equation
15.4.

The two methods that we have used to solve the Einstein model of a solid
should be clearly distinguished. In Section 15.2 we assumed that U/hw,
was an integer, and we counted the number of ways of distributing quanta
among the modes. This was a combinatorial problem, albeit a simple and
tractable one because of the extreme simplicity of the model. The second
method, in this section, involved no combinatorial calculation whatsoever.
Instead we defined a volume in an abstract “state space” and the entropy
was related to the total volume inside the bounding surface defined by the
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energy U. The combinatorial approach is not easily transferable to more
complicated systems—the method of hypervolumes is general and is
usually more tractable. However the last method is not applicable at very
low temperature where only a few states are occupied, and where the occu-
pied volume in state space shrinks toward zero.

PROBLEMS

15.5-1. To establish equation 15.29 let 2, be the hypervolume subtended by the
diagonal hyperplane in » dimensions. Draw appropriate figures for n = 1, 2, and
3 and show that if L is the intercept on each of the coordinate axes

15.5-2. Recalling that
lim (1 + x)F=e (=2718...)
show that

A _w A
(1 U)—e forU<<1

With this approximation discuss the accuracy of equation 15.31 for a range of
reasonable values of A/U (ranging perhaps from 103 to 10~19),

With what precision A/U would the energy have to be known in order that
corrections to equation 15.31 might become significant? Assume a system with
N =10%,

15.5-3. Calculate the fraction of the hypervolume between the radii 0.9 and r
for hyperspheres in 1, 2, 3, 4, and 5 dimensions. Similarly for 10, 30, and 50
dimensions.




