
ALTERNATIVE FORM U LATI ONS
AND

LEG ENDR E TRANSFORMATIONS

5.1 THE ENERGY MINIMUM PRINCIPLE

In the preceding chapters we have inferred some of the most evident
and immediate consequences of the principle of maximum entropy. Fur-
ther consequences will lead to a wide range of other useful and fundamen-
tal results. But to facilitate those developments it proves to be useful now
to reconsider the formal aspects of the theory and to note that the same
content can be reformulated in several equivalent mathematical forms.
Each of these alternative formulations is particularly convenient in par-
ticular types of problems, and the art of thermodynamic calculations lies
largely in the selection of the particular theoretical formulation that most
incisively " fi.ts" the given problem. In the appropriate formulation ther-
modynamic problems tend to be remarkably simple; the converse is that
they tend to be remarkably complicated in an inappropriate formalism!

Multiple equivalent formulations also appear in mechanics-Newto-
nian, Lagrangian, and Hamiltonian formalisms are tautologically equiv-
alent. Again certain problems are much more tractable in a Lagrangian
formalism than in a Newtonian formalism, or vice versa. But the dif-
ference in convenience of different formalisms is enormously greater in
thermodynamics. It is for this reason that the general theory of transforma-
tion among equiualent representations is here incorporated as a fundamental
aspect of thermostatistical theory.

In fact we have already considered two equivalent representations-the
energy representation and the entropy representation. But the basic ex-
tremum principle has been formulated only in the entropy representation.
If these two representations are to play parallel roles in the theory we
must find an extremum principle in the energy representation, analogous
to the entropy maximum principle. There is, indeed, such an extremum
principle; the principle of maximum entropy is equivalent to, and can be
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FIGURE 5.I

The equilibrium state I as a point of maximum ̂ S for constant U.

entropy.

, Figure 5.1 shows a section of the thermodynamic configuration space
for a composite system, as discussed in Section 4.1. The axes labeled S

state labeled A ir Fig. 5.1.
The alternative representation of the equilibrium state A as a state of

minimum energy for given entropy is illustrated in Fig. 5.2. Through the
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FIGURE 5.2

The equilibrium state I as a point of minimum U for constant S.

equilibrium point A is passed the plane S : 56, which determines a curve
of intersection with the fundamental surface. This curve consists of a
family of states of constant entropy, and the equilibrium state A is the state
that minimizes the energ) along this curue.

The equivalence of the entropy maximum and the energy minimum
principles clearly depends upon the fact that the geometrical form of the
fundamental surface is generally as shown in Fig. 5.1 and 5.2. As dis-
cussed in Section 4.1, the form of the surface shown in the figures is
determined by the postulates that 0S/0U > 0 and that U is a single-val-
ued continuous function of S; these analytic postulates accordingly are
the underlying conditions for the equivalence of the two principles.

To recapitulate, we have made plausible, though we have not yet
proved, that the following two principles are equivalent:

Entropy Maximum Principle. The equilibrium ualue of any unconstrained
internal parameter is such as to maximize the entropy for the giuen ualue of
the total internal energ).

Energy Minimum Principle. The equilibrium ualue of any unconstrained
internal parameter is such as to minimize the energ/ for the giuen ualue of
the total entropy.

The plane
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The proof of the equivalence of the two extremum criteria can be
formulated either as a physical argument or as a mathematical exercise.
We turn first to the physical argument, to demonstrate that if the energy
were not minimum the entropy could not be maximum in equilibrium,
and inversely.

Assume, then, that the system is in equilibrium but that the energy does
not have its smallest possible value consistent with the given entropy. We
could then withdraw energy from the system (in the form of work)
maintaining the entropy constant, and we could thereafter return this
energy to the system in the form of heat. The entropy of the system would
increase (dQ : T dS), and the system would be restored to its original
energy but with an increased entropy. This is inconsistent with the
principle that the initial equilibrium state is the state of maximum
entropy! Hence we are forced to conclude that the original equilibrium
state must have had minimum energy consistent with the prescribed
entropy.

The inverse argument, that minimum energy implies maximum entropy,
is similarly constructed (see Problem 5.1-1).

In a more formal demonstration we assume the entropy maximum
principle

( # )  u : o  a n d  ( # ) , . 0 (5 .1 )

where, for clarity, we have written X for Xtt), and where it is implicit that
all other X's are held constant throughodt. Also, for clarity, we tempo-
rarily denote the first derivative (AU/AX)s by P. Then (by equation A.2Z
of Appendix A)

(s.2)

We conclude that U has an extremum. To classify that extremum as a
maximum, a minimum, or d point of inflection we must study the sign of
the second derivative (A2U/AX\s: (AP/AX)". But consid-ering p as a
function of U and X we have

l a , u \  / a p t  l a P \  t a u \  . t f P \  / a P \  ̂  t a P \
\ u * ' / " :  I  a x ) ' :  \ m ) - \ a x l ,  * t  a x ) , :  \ m ) * ' * \ a x ) ,

(5 .3 )

a t P : 0 (s.4)



The Energt Minimum Principle 1 3 5

a2s

(s.s;

(5 .6)

a2s
ax2
a s -
AU

:  -70 's=  r  0
AX'

u,f f i :o

AXAUas
AXffir

(s.7)

so that U is a minimum. The inverse argument is identical in form.
As already indicated, the fact that precisely the same situation is

described by the two extremal criteria is analogous to the isoperimetric
problem in geometry. Thus a circle may be characterized either as the two
dimensional figure of maximum area for given perimeter or, alternatively,
as the two dimensional figure of minimum perimeter for given area.

The two alternative extremal criteria that characterize a circle are
completely equivalent, and each applies to every circle. Yet they suggest
two different ways of generating a circle. Suppose we are given a square
and we wish to distort it continuously to generate a circle. We may keep
its area constant and allow its bounding curve to contract as if it were a
rubber band. We thereby generate a circle as the figure of minimum
perimeter for the given area. Alternatively we might keep the perimeter of
the given square constant and allow the area to increase, thereby obtain-
ing a (different) circle, as the figure of maximum area for the given
perimeter. However, after each of these circles is obtained each satisfies
both extremal conditions for its final ualues of area and perimeter.

The physical situation pertaining to a thermodynamic system is very
closely analogous to the geometrical situation described. Again, any
equilibrium state can be characteized either as a state of maximum
entropy for given energy or as a state of minimum energy for given
entropy. But these two criteria nevertheless suggest two different ways of
attaining equilibrium. As a specific illustration of these two approaches to
equilibrium, consider a piston originally fixed at some point in a closed
cylinder. We are interested in bringing the system to equilibrium without
the constraint on the position of the piston. We can simply remove the
constraint and allow the equilibrium to establish itself spontaneously; the
entropy increases and the energy is maintained constant by the closure
condition. This is the process suggested by the entropy maximum princi-
ple. Alternatively, we can permit the piston to move very slowly, reversi-
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energy minimum principle. The vital fact we wish to stress, however, is
that independent of whether the equilibrium is brought about by either of
these two processes, or by any other process, the final equilibrium state in

equilibrium state. The fundamental equation in the enelgy representation
is

y :  yr r ) (S Q),y( r )  ,Nr( t ) ,  .  .  . )  +  U, t t1  gQ) ,y(2)  ,Nr( ) ,  .  .  . )  (S.A)

All volume and mole number parameters are constant and known. The
variables that must be compute-d are S(1) and S(2). Now, despite the fact

j! : 7Q 43Q I 7Q) 65Q) (5.e)

The energy minimum condition states that dLI : 0, subject to the condi-
tion of fixed total entropy:

whence

and we conclude that

5(t) -'u 5(2) : constant

d t J :  ( 7 0  -  T @ ) d s ( l ) :  0

7 . D : 7 Q )

(s.ro)

(s.11)

(5 .12)

The energy minimum principle thus provides us with the same condi-
tion of thermal equilibrium as we previously found by using the entropy
maximum principle.

Equation 5.12 is one equation in S(r) and S(2). The second equation is
mosi conveniently taken as equation 5.8, in which the total energy U is
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known and which consequently involves only the two unknown quantities
S(r) and S(2). Equations 5.8 and 5.72, in principle, permit a fully explicit
solution of the problem.

In a precisely analogous fashion the equilibrium condition for a closed
composite system with an internal moveable adiabatic wall is found to be
equality of the pressure. This conclusion is straightforward in the energy
representation but, as was observed in the last paragraph of Section 2.7 , it
is relatively delicate in the entropy representation.

PROBLEMS

5.1-1. Formulate a proof that the energy minimum principle implies the entropy
maximum principle-the "inverse argument" referred to after equation 5.7. That
is, show that if the entropy were not maximum at constant energy then the energy
could not be minimum at constant entropy.
Hint: First show that the permissible increase in entropy in the system can be
exploited to extract heat from a reversible heat source (initially at the same
temperature as the system) and to deposit it in a reversible work source. The
reversible heat source is thereby cooled. Continue the argument.

5.1-2. An adiabatic, impermeable and fixed piston separates a cylinder into two
chambers of volumes Vo/4 and 3Vo/4. Each chamber contains 1 mole of a
monatomic ideal gas. The temperatures are { and 7,, the subscripts s and /
referring to the small and large chambers, respectively.
a) The piston is made thermally conductive and moveable, and the system
relaxes to a new equilibrium state, maximizing its entropy while conseruing its total
energ). Find this new equilibrium state.
D) Consider a small virtual change in the energy of the system, maintaining the
entropy at the value attained in part (c). To accomplish this physically we can
reimpose the adiabatic constraint and quasistatically displace the piston by
imposition of an external force. Show that the external source of this force must
do work on the system in order to displace the piston in either direction. Hence
the state attained in part (a) is a state of minimum energ) at constant entropy.
c) Reconsider the initial state and specify how equilibrium can be established by
decreasing the energy at constant entropy. Find this equilibrium state.
d) Describe an operation that demonstrates that the equilibrium state attained in
(c) is a state of maximum entropy at constant energy.

5.2 LEGENDRE TRANSFORMATIONS

In both the energy and entropy representations the extensive parame-
ters play the roles of mathematically independent variables, whereas the
intensive parameters arise as derived concepts. This situation is in direct
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contrast to the practical situation dictated by convenience in the labora-
tory. The experimenter frequently finds that the intensive p:lrameters are
thimore easily measured and controlled and therefore is likely to think of
the intensive parameters as operationally independent variables and of the
extensive parameters as operationally derived quantities.- The extreme
instance of this situation is provided by the conjugate variables entropy
and temperature. No practical instruments exist for the measurement and
control of entropy, whereas thermometers and thermostats, for the mea-
Surement and control of the temperature, are common laboratory
equipment. The question therefore arises as to the possibility of recasting
the mathematicaf formalism in such a way that intensive parameters will
replace extensive parameters as mathematically independent.variables. We
shall see that suc[ a reformulation is, in fact, possible and that it leads to
various other thermodynamic representations-

It is, perhaps, superfluous at this point to stress again _that thermody'
namics is logiially complete and self-contained within either the entropy
or the energy representttions and that the introduction of the transformed
representati;ns is purely a matter of convenience. This is, admittedly, a
cohvenience without which thermodynamics would be almost unusably
awkward, but in principle it is still only a luxury rather than a logical
necessity.

The purely formal aspects of the problem are as follows. We are given
an equation (the fundamental relation) of the form

y  :  y ( X s ,  X r , . . . ,  X , )

and it is desired to find a method whereby the derivatives

(5.13)

(5.14)

mathematical case in which the
only a single independent vari-

P-=#

shall develop in this Section.
For simplicity, we first consider the

fundamental relation is a function of
able X.

Y:  Y (x )  ( s . l s )

Geometrically, the fundamental relation is represented by a curve in a
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X FIGURE 5 3

space (Fig. 5.3) with cartesian coordinates X and Y, and the derivative

, :  0 Y' - a x (s.16)

is the slope of this curve. Now, if we desire to consider p as an
independent variable in place of X, our first impulse might be simply to
eliminate X between equations 5.15 and 5.16, thereby obtaining Y as a
function of P

Y :  Y \ P ) (s.17)

A moment's reflection indicates, however, that we would sacrifice some of
the mathematical content of the given fundamental relation (5.15) for,
from the geometrical point of view, it is clear that knowledge of y as a
function of the slope dY/dX would not permit us to reconstruct the curve
Y : Y(X). In fact, each of the displaced curves shown in Fig. 5.4
corresponds equally well to the relation Y : Y(P). From the analytical
point of view the relation Y : Y(P) is a first-order differential equation,
and its integration gives Y : Y(X) only to within an undetermined
integration constant. Therefore we see that acceptance of Y : Y(P) as a
basic equation in place of Y : Y(X) would involve the sacrifice of some
information originally contained in the fundamental relation. Despite the

FIGURE 5.4
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FIGURE 5.5

desirability of having P as a mathematically independent variable, this
sacriflce of the informational content of the formalism would be com-
pletely unacceptable.

The practicable solution to the problem is supplied by the duality
between conventional point geometry and the Pluecker line geometry.The
essential concept in line geometry is that a given curve can be represented
equally well either (a) as the envelope of a family of tangent lines (Fig.
5.5), or (b) as the locus of points satisfying the relation Y : Y(X). Any
equation that enables us to construct the family of tangent lines therefore
determines the curve equally as well as the relation Y : Y(X).

Just as every point in the plane is described by the two numbers X and
Y, so every straight line in the plane can be described by the two numbers
P and ry', where P is the slope of the line and r/ is its intercept along the
Y-axis. Then just as a relation Y: Y(X) selects a subset of all possible
points (X,Y), a relation ,1, : ,l'e) selects a subset of all possible lines
(P,+). A knowledge of the intercepts r/., of the tangent lines as a function
of the slopes P enables us to construct the family of tangent lines and
thence the curve of which they are the envelope. Thus the relation

, / , :  V (P) (s .18)

is completely equivalent to the fundamental relation Y: Y(X). In this
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relation the independent variable is P, so that equation 5.18 provides a
complete and satisfactory solution to the problem. As the relation rp :
r/(P) is mathematically equivalent to the relation Y: Y(X), it can also
be considered a fundamental relation; Y : Y(X) is a fundamental rela-
tion in the "Y-representation"; whereas .1, : {(P) is a fundamental
relation in the "rf-representation."

The reader is urged at this point actually to draw a reasonable number
of straight lines, of various slopes P and of various Y-intercepts ,1, : - P2.
The relation { : - P2 thereby will be seen to characterize a parabola
(which is more conventionally described as Y : iX'\.In rp-repreientation
the fundamental equation of the parabola is rl, - - P', whereas in Y-rep-
resentation the fundamental equation of this same parabola is Y : iX'.

The question now arises as to how we can compute the relation
,1., : ,lre) if we are given the relation Y : Y(X). The appropriate
mathematical operation is known as a Legendre transformation. We
consider a tangent line that goes through the point (X,Y) and has a slope
P. If the intercept is rf, we have (see Fig. 5.6)

P : Y _ +-  x - 0

{ : Y - P X

Let us now suppose that we are given the equation

Y :  Y ( x )

(5.1e)

(5.20)

(s.27)

X + FIGURE 5.6
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and by differentiation we flnd

P  :  P ( x ) (s.22)

Then by eliminatiod of X and I among equations 5.20,5.2I, and 5.22 we
obtain the desired relation between rlt and P. The basic identity of the
Legendre transformation is equation 5.20, and this equation can be taken
as the analytic definition of the function rp. The function rf, is referred to
as a Legendre transform of Y.

The inverse problem is that of recovering the relation Y : y( X) if the
relation ,lr: rl,e) is given. We shall see here that the relationship
between (X,Y) and (P, rf ) is symmetrical with its inverse, except for a
sign in the equation of the Legendre transformation. Taking the differen-
tial of equation 5.20 and recalling that dY : P dX, we find

dl / :  dY -  PdX -  XdP

:  _XdP (5.23)

\5.24)

If the two variables ,/ and P are eliminated2 from the given equation
* : +(P) and from equations 5.24 and 5.20, we recover the relation
Y : Y(X). The symmetry between the Legendre transformation and its
inverse is indicated by the following schematic comparison:

*  : ' l ' (P )

- Y :  d +
dP

Y : X P + { /
Elimination of P and rf yields

Y :  Y ( X )

The generalization of the Legendre transformation to functions of more
than a single independent variable is simple and straightforward. In three
dimensions Y is a function of Xo and X1, and the fundamental equation
represents a surface. This surface can be considered as the locus of points

rThis elimination is possible if P is not independent of X; that is' il d2Y/dX2 + 0 ln the

thermodynamic application this criterion will turn out to be identical to the criterion of stability The

criterion fails only at the "critical points," which are discussed in detail in Chapter 10.
2The condition that this be possible is that d2'1'70f2 + 0, *hich will, in the thermodynamic

application, be guaranteed by the stability of the system under consideration.

dl)
dP

t / _-  -

Y :  Y ( X )

P : d Y- d x

* :  _ P X +
Elimination of X and

: . l ' :  +(P)

Y
Y yields
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satisfying the fundamental equation I : Y(X0,4), or it can be consid-
ered as the envelope of tangent planes. A plane can be characteized by its
intercept rp on the Y-axis and by the slopes Po and P, of its traces on the
Y - Xo and Y - X, planes. The fundamental equation then selects from
all possible planes a subset described by ,i : *(Po, P).

In general the given fundamental relation

Y  :  Y ( X s ,  X 1 , . . . ,  X , ) (5.2s)

represents a hypersurface in a (t + 2)-dimensional space with cartesian
coordinates Y, Xs, Xr,..., X,. The derivative

P-:-:+ (s.26)

is the partial slope of this hypersurface. The hypersurface may be equally
well represented as the locus of points satisfying equation 5.25 or as the
envelope of the tangent hyperplanes. The family of tangent hyperplanes
can be characterized by giving the intercept of a hyperplane, {, as a
function of the slopes Ps, Pb..., P,. Then

+ : Y - (s.27)

Taking the differential of this equation, we find

d* :  - lxodro
K

(5 .28)

whence

-xk (s.2e)

A Legendre transformation is effected by eliminating I and the Xo fuom
Y : Y(Xs, XD. . . , X,), the set of equations 5.26, and equation 5.27. The
inverse transformation is effected by eliminating rf and the Po from
* : *(Pr, Pr, . . ., {), the set of equations 5.29, and equation 5.27.

Finally, a Legendre transformation may be made only in some (n * 2)-
dimensional subspace of the full (l + .2)-dimensional space of the relation
Y : Y(Xs, X1,. . . , X,). Of course the subspace must contain the Y-coor-
dinate but may involve any choice of n -t 1 coordinates from the set
Xs, X1,. . . , X,. For convenience of notation, we order the coordinates so
that the Legendre transformation is made in the subspace of the flrst
n I I coordinates (and of I); the coordinates Xn+t, Xn+2, . . . , X, are left

LPoxo
k

all
oPo
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untransformed. Such a partial Legendre transformation is effected merely
by considering the variables X,+r, X,+2,. . . , X, as constants in the trans-
formation. The resulting Legendre transform must be denoted by some
explicit notation that indicates which of the independent variables
have participated in the transformation. We employ the notation
YlPo, Pr,..., P,f to denote the function obtained by making a Leg-
endre transformation with respect to Xs, Xr,.. ., X, on the function
Y(Xo,Xr, . . . ,  X,) .  Thus YlPo, PD.. . ,  P, l  is a funct ion of the independent
variables Ps, Pb. . ., P,, Xn+I,. . ., X,. The various relations involved in a
partial Legendre transformation and its inverse are indicated in the
following table.

Y  :  Y ( X 6 ,  X 1 , . . . ,  X , )

, - o Y' * -  0 X *

YlPo, Pt,. . ., Pnl : function of
P g ,  P v . . . ,  P n ,  X r q y . . . ,  X ,

-xk

(5.30)

k < n

(s.31)

k > n

The partial differentiation denotes
constancy of all the natural varia-
bles of Yother than Xo (i.e., of all
X , w i t h  j + k )

6y : lpodXo
0

Y I P o , . . . , P , l :

Elimination of Y and Xo,
Xy.. ., X, from equations 5.30,
5.33, and the first n * l equations
of 5.31 yields the transformed
fundamental relation.

In this section we have divorced
transformations from the physical

The partial differentiation denotes
constancy of all the natural varia-
bles of Y(P0,... ,  Pn) other than
that with respect to which the
differentiation is beine carried out.

d Y l P o , . . . ,  P n l

+ L Pkdxk
n ' t  I

(s.32)
n

Y :  Y I P , , . . . , P n l + D X k P k
0

(5 .33)

Elimination of Y[Po, ..., P,l and
Po, P,. . .  .  .  Pn from equations
5.30, 5.33, and the flrst n -f 7
equations of 5.31 yields the origi-
nal fundamental relation.

the mathematical aspects of Legendre
applications. Before proceeding to the

n

: _ Lxkdpk
0

n

Y  -  D P k x k
0
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thermodynamic applications in the succeeding sections of this chapter, it
may be of interest to indicate very briefly the application of the formalism
to Lagrangian and Hamiltonian mechanics, which perhaps may be a more
familiar field of physics than thermodynamics. The Lagrangian principle
guarantees that a particular function, the Lagrangian, completely char-
acterizes the dynamics of a mechanical system. The Lagrangian is a
function of. 2r vafiables, r of which are generalized coordinates and r of
which arg generalized uelocities. Thus the equation

L  :  L ( u r , u z , . . . , u r ,  Q r ,  Q 2 , . . . ,  Q , ) (5 .34)

plays the role of a fundamental relation. The generalized momenta are
defined as derivatives of the Lagrangian function

, : 0 L' 1' - ou*
(5 .35)

If it is desired to replace the velocities by the momenta as independent
variables, we must make a partial Legendre transformation with respect to
the velocities. We thereby introduce a new function. called the Hamilto-
nian, defined by'

( - H ) -  L - (5.36)

A complete dynamical formalism can then be based on the new funda-
mental relation

H  :  H ( p r ,  P r , . . . ,  p , ,  Q 1 ,  e 2 , . . . ,  Q , ) (s.37)

Furthermore, by equation 5.31 the derivative of f/ with respect to Po is
the velocit] up, which is one of the Hamiltonian dynamical equations.
Thus, if an equaftion of the form 5.34 is considered as a dynamical
fundamental equa{tion in the Lagrangian representation, the Hamiltonian
equation (5.37) is\he equivalent fundamental equation expressed in the
Hamiltonian representation.

PROBLEMS

5.2-1. The equation y : x2770 describes a parabola.
a) Find the equation of this parabola in the "line geometry representation"
' l '  : +(P).
b) On a sheet of graph paper (covering the range roughly from x = - 15 to
x = +15 and from y = -25 to y - +25) draw straightlineswithslopes P : 0,

3In our usage the Legendre transform of the Lagrangian is the negatiue Hamiltonian. Actually, the
accepted mathematical convention agrees with the usage in mechanics, and the function - rl, would be
called the Legendre transform of Y.

DPouo
I
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+ 0.5, + l, +2, * 3 and with intercepts ry' satisfying the relationship ,1, : r/,'(P) as
found in part (c). (Drawing each straight line is facilitated by calculating its
intercepts on the x-axis and on the y-axis.)

5 . 2 ' 2 . L e t  l : A e B ' .
a) Find r/,(P).
b) Calculate the inverse Legendre transform of rf (P) and corroborate that this
result is y(x).
c) Taking A : 2 and B : 0.5, draw a family of tangent lines in accordance with
the result found in (a), and check that the tangent curve goes through the
expected points aI x : 0, I, and 2.

5.3 THERMODYNAMICPOTBNTIALS

The application of the preceding formalism to thermodynamics is
self-evident. The fundamental relation Y : Y(Xs, Xy. . . ) can be inter-
preted as the energy-language fundamental relation U : U(5,
X1,  X2, . . . ,  X , )  o r  U :  U(S,V,  Nr ,  Nr ,  .  .  .  ) .  The der iva t ives  Ps ,  Pv  . . .
correspond to the intensive parameters T, - P, Fr, Fz, . . . . The Legendre
transformed fulctions are called thermodynamic potentials, and we now
specifically define several of the most common of them. In Chapter 6 we
continue the discussion of these functions by deriving extremum princi-
ples for each potential, indicating the intuitive significance of each, and
discussing its particular role in thermodynamic theory. But for the mo-
ment we concern ourselves merely with the formal aspects of the defini-
tions of the several particular functions.

The Helmholtz potential or the Helmholtz free energy, is the partial
Legendre transform of U that replaces the entropy by the temperature as
the independent variable. The internationally adopted symbol for the
Helmholtz potential is F. The natural variables of the Helmholtz potential
are T, V, Ny Nr, . . . That is, the functional relation F -

F(T,V, N1, N2, . . . ) constitutes a fundamental relation. In the systematic
notation introduced in Section 5.2

p  =  u [ r l (s .38)

The full relationship between the energy representation and the
Helmholtz representation, is summarized in the following schematic com-
parison:

u(s,v, Ny N2,
au/ as
U - T S

Elimination of U and S yields
F  :  F (T ,V ,  N1 ,  N r ,  . . . )

F : F(T,V, Np N2,
-s : aF/ar

U : F + T S
Elimination of F and Z yields

U :
T :

(5.3e)
(5.40)
(5.41)

U : U(S,V, Ny N2,
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The complete differential dF is

d F :  - S d T -  P d V +  F r d N r i  p r d N r - f  . . . \s.42)

The enthalpy is that partial Legendre transform of U that replaces the
volume by the pressure as an independent variable. Following the recom-
mendations of the International Unions of Physics and of Chemistry, and
in agreement with almost universal usage, we adopt the symbol I/ for the
enthalpy. The natural variables of this potential are S, P,Nr,Nr, ... and

n  =  u lP l (5.43)

The schematic representation of the relationship of the energy and en-
thalpy representations is as follows:

Particular attention is called to the inversion of the signs in equations
5.45 and 5.46, resulting from the fact that -P is the intensive parameter
associated with V. The complete differential dH is

dH :  TdS  +  VdP +  hdNr *  1 t rdN ,  +  . . ' (s.47)

The third of the common Legendre transforms of the energy is the
Gibbs potential, or Gibbs free energt. This potential is the Legendre
transform that simultaneously replaces the entropy by the temperature
and the volume by the pressure as independent variables. The standard
notation is G, and the natural variables are T,P,NyNr,.. . .  We thus
have

G = u l r ,  P l (5 .48)

and

U :  U(S,V,  N1,  Nr ,  . . . )
-P - AU/AV

H : U + P V
Elimination of U and Z yields

H :  H ( S , P , N y N r , . . . )

U :  U (5 ,V ,  Ny  Nr ,  . . . )
T:  AU/AS

-P : AU/AV
G :  U  _  Z S  +  P V

Elimination of U, S, and V yields
G :  G(7 ,  P ,  Nv  Nz ,  . . . )

H : H(5, P, NL, Nz,

v: aH/aP
U : H _ P V

Elimination of Il and P yields
U :  U (5 ,V ,  Ny  Nr ,  . . . )

G  :  G ( 7 ,  P ,  N v  N r ,  . . . )
-s : ac/ar

v: aG/aP
U : G + T S _ P V

Elimination of G, T, and
U : U(S,V, N1, N2,

(s.44)
(5.45)
(5.46)

(5.4e)
(s.50)
(s.s1)
(5.s2)

P yields
. . . )
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The complete differential dG is

dG : -SdT + VdP + hdNr * p.rdN, *

A thermodynamic potential which arises naturally
chanics is the grand canonical potential, UlT,p.l. For
have

(5 .53)

in statistical me-
this potential we

u : u(s,v, N)
r : au/as
p: au/aN

U l T , p l - U - T S - p , N
Elimination of

(/, S, and N yields
UlT, pl as a function of T,V, p,

UlT,pl: function of T,V, and p (5.54)
-s :  AUI r ,p l /AT (s .55)
- N - AUlr, pl/ 0p (s.56)

U: UlT,pl  + 7S + pN (5.57)
Elimination of

UlT, pl, T, and p yields
u : u(s,v, N)

and

d(I lT,pl  :  -  Sdr -  Pdv -  Ndp, (s.s8)

Other possible transforms of the energy for a simple system, which are
used only infrequently and which consequently are unnamed, are Ulptrl,
UlP, pl, UIT, pv p"rl, and, so forth. The complete Legendre transform is
UlT,  P,  Fy p2, . . . ,  p , l .  The fact  that  U(S,  V,  Ny Nr , . . . ,N, )  is  a  homoge-
neous first-order function of its arguments causes this latter function to
vanish identically. For

I J I T , P , F r , . . . , p , l :  U  -  T S  +  P V  -  F r N r  -  p z N z -  " '  - F , N ,

which, by the Euler relation (3.6), is identically zero

(5.se)

(s.60)U I T , P , F r , . . . , p . l  =  0

PROBLEMS

5.3-1. Find the fundamental equation of a monatomic ideal gas in the Helmholtz
representation, in the enthalpy representation, and in the Gibbs representation.
Assume the fundamental equation computed in Section 3.4. ln each case find the
equations of state by differentiation of the fundamental equation.

5.3-2. Find the fundamental equation of the ideal van der Waals fluid (Section
3.5) in the Helmholtz representation.

Perform an inverse Legendre transform on the Helmholtz potential and show
that the fundamental equation in the energy representation is recovered.
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53-3. Find the fundamental equation of electromagnetic radiation in the Helm-
holtz representation. Calculate the "thermal" and "mechanical" equations of
state and corroborate that they agree with those given in Section 3.6.

53-44. Justify the following recipe for obtaining a plot of F(V) from a plot of
G(P) (the common dependent variables Z and N being notationally suppressed
for convenience).

P V

(1) At a chosen value of P draw the tangent line A.
(2) Draw horizontal lines B and C through the intersections of A with p : 1 and
P  : 0 .
(3) Draw the 45o line D as shown and project the intersection of B and D onto
the line C to obtain the point ^F(Z).
Hint: ldentify the magnitude of the two vertical distances indicated in the G
versus P diagram, and also the vertical separation of lines B and C.

Note that the units of F and v are deternined by the chosen units of G and p.
Explain.

Give the analogous construction for at least one other pair of potentials.
Note that G(P) is drawn as a concave function (i.e., negative curvature) and

show that this is equivalent to the statement that ,(r > 0.
5.3-5. From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation in Gibbs representation. calculate a(7, p),
rcr(T, P), and cr(7, P) by differentiation of G.
5.3-6. From the second acceptable fundamental equation in problem 1.10-1
calculate the fundamental equation in enthalpy representation. Calculate
V(5, P, N) by differentiation.

5.3-7. The enthalpy of a particular system is

H:AS 'N - " . (+ )
\ . 0 /

aAdapted from H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford r
University Press, 1971)
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where A is a positive constant. Calculate the molar heat capacity at constant
volume cu as a function of T and P.

5.3-8. In Chapter 15 it is shown by a statistical mechanical calculation that the
fundamental equation of a system of .& "atoms" each of which can exist in an
atomic state with energy c, or in an atomic state with energy e, (and in no other
state) is

F :  -  Nk"TlnTe-P"" + r-F'a1

Here k" is Boltzmann's constant and B :l/kBT. Show that the fundamental
equation of this system, in entropy representation, is

s:NR.(-#O)

where

Y = Y - - r t "
Nea- U

Hint: Introduce B: $rT)- r, ffid show first that Il : F + BAF/AB:
A(BF)IaB. Also, for definiteness, assume e,1 ea,and note that NkB : NR where N
is the number of atoms and N is the number of moles.

5.$9. Show, for the twoJevel system of Problem 5.3-8, that as the temperature
increases from zero to infinity the energy increases from .&e, to .&1r, + e)/2.
Thus, at zero temperature all atoms are in their "ground state" (with energy e,),
and at infinite temperature the atoms are equally likely to be in either state.
Energies higher than N(e , + e)/2 are inaccessible in thermal equilibrium! (This
upper bound on the energy is a consequence of the unphysical oversimplification
of the model; it will be discussed again in Section 15.3.)
Show that the Helmholtz potential of a mixture of simple ideal gases is the sum of
the Helmholtz potentials of each individual gas:

s.3-10.
a) Show that the Helmholtz potential of a mixture of simple ideal gases is the
sum of the Helmholtz potentials of each individual gas:

F ( 7 , V , i r r , . . . , N , ) :  F ( 7 , V , & )  +  ' "  + F ( 7 , V , N , )

Recall the fundamental equation of the mixture, as given in equation 3.40.
An analogous additivity does not hold for any other potential expressed in terms of
its natural variables.

53-f 1. A mixture of two monatomic ideal gases is contained in a volume Z at
temperature T. The mole numbers are N, and Nr. Calculate the chemical
potentials p, and pr. Recall Problems 5.3-1 and 5.3-f0.

Assuming the system to be in contact with a reservoir of given T and p1,
through a diathermal wall permeable to the first component but not to the second,
calculate the pressure in the system.
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5.3-12. A system obeys the fundamental relation

( t - t o ) o : A u u z

Calculate the Gibbs potential G(7, P, N).

5.3-13. For a particular system it is found that

u :  ( | ) P v

and

P :  AuTa

Find lr fundamental equation, the molar Gibbs potential, and the Helmholtz
potential for this system.

5.3-14. For a particular system (of I mole) the quantity (u + a)f is known to be
a function of the temperature only (: YQD. Here u is the molar volume, / is
the molar Helmholtz potential, a is a constant, and Y(T) denotes an unspecified
function of temperature. It is also known that the molar heat capacity c, is

c , :  b ( u ) F

where b(u) is an unspecified function of u.
a) Evaluate Y(T) and b(u).
D) The system is to be taken from an initial state (4, uo) to a final state (71,u1).
A thermal reservoir of temperature I is available, as is a reversible work source.
What is the maximum work that can be delivered to the reversible work source?
(Note that the answer may involve constants unevaluated by the stated condi-
tions, but that the answer should be fully explicit otherwise.)

5.4 GENERALIZED MASSIEU FI.JNCTIONS

Whereas the most common functions definable in terms of Legendre
transformations are those mentioned in Section 5.3, another set can be
defined by performing the Legendre transformation on the entropy rather
than on the energy. That is, the fundamental relation in the form S:
S(U,V, Np Nz, . . .) can be taken as the relation on which the transforma-
tion is performed. Such Legendre transforms of the entropy were invented
by Massieu in 1869 and actually predated the transforms of the energy
introduced by Gibbs in 1875. We refer to the transforms of the entropy as
Massieu functions, as distinguished from the thermodynamic potentials
transformed from the energy. The Massieu functions will turn out to be
particularly useful in the theory of irreversible thermodynamics, and they
also arise naturally in statistical mechanics and in the theory of thermal
fluctuations. Three representative Massieu functions are Sll/Tl, in which
the internal energy is replaced by the reciprocal temperature as indepen-
dent variable; SIP/71, in which the volume is replaced by P/T as
independent variable; and Sll/7, P /Tl, in which both replacements are
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made simultaneously. Clearly

and

S : S(U, V, N1, Nr, .  .  .)

P/T:  AS/AV
saP/ r l -s - (P / r )v

Elimination of
S and Z yields StP/rl

as a function of U, P/7, NL, N2, .

Thus, of the three, only SIP/TI is not trivially related
previously introduced thermodynamic potentials. For this

(5.61)

(s.62)

(5 .63)

to one of the
function

SV/7"l: function of
u, P/7, N1, N2,... ,  (5.64)

-v - asv/rl/ae/D (5.65)
s : slP/rl + (P/T)V (s.66)

Elimination of
SIP/Tland P/T yields

S : S(U, V, N1, Nr, . . .)

' [ + ]  - s -  i u : - I
' [ i ]  - s - ' 7  v

' [ + ,+ ] :s -+u-+  v : -+

dslp/rl  :  0/r) du - vd(p/r) -(p,/r) dN,, - * o*r...

(5.62)
other Massieu functions may be invented and analyzed by the reader as a
particular need for them arises.

PROBLEMS

5.4-1. Find the fundamental equation of a monatomic ideal gas in the representa-
tion

s [ : . 4 1. I T '  T  )
Find the equations of state by differentiation of this fundamental equation.
5.4-2. Find the fundamental equation of electromagnetic radiation (Section 3.6)
a) in the representation S[t/fl
D) in the representation SIP/fl
5.4-3. Find the fundamental equation of the ideal van der waals fluid in the
representation sll/Tl. Show that slr/Tl is equal to - Flr (recall that ,F was
computed in Problem 5.3-2).


