
SOME FORMAL RELATIONSHIPS,
AND SAMPLE SYSTEMS

3-1 THE EULER EQUATTON

Having seen how the fundamental postulates lead to a solution of the

From the definition of the homogeneous first-order property we have,
for anv l,

u ( I s , I x r , . . . , I x , )  :  l u ( s ,  x t , . . . ,  x , )

Differentiating with respect to l,

(3 .1  )

a$x j )
A U ( . . . , | r X 0 , . . . )

(3.2)

a u (  . . . . I x , . . . .  )  t-  -  \ " - r - " ' k r . . ' )  
e  r  \ -

a(Is) " ' 
,?,

:  U ( S ,  X r , . . . ,  X , ) (3.3)

This equation is true for any l, and in particular for l, : 1, in which case
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it takes the form

i,#*,*

s: (I),.(+), E,(#)*r

# t * : U (3.4)

(3 .5 )

(3.6)

U : T S + I
j : 1

Pixi

For a simple system in particular we have

U :  TS -  PV + prNr  *  . . .  *p , ,N,

The relation 3.5 or 3.6 is the particularization to thermodynamics of the
Euler theorem on homogeneous first-order forms. The foregoing develop-
ment merely reproduces the standard mathematical derivation. we refer
to equation 3.5 or 3.6 as the Euler relation.

In the entropy representation the Euler relation takes the form

s :  I 4 x j
J - 0

(3.7)

(3.8)

PROBLEMS

3.1-1. write each of the five physically acceptable fundamental equations of
Problem l. l0-l in the Euler form.

3.2 THE GIBBS-DUHEM RELATION

intensive parameters are not all independent. There is a relation among
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the intensive parameters, and for a single-component system ,r is afunction of T and p.
The existence of a.rerationship among the various intensive parameters

is a consequence of the. homogineo,rs [tsro.o"io.ro*r'.t the funda-mental relation. For a single-component system tt i, prop6rty permits thefundamental relation to be written rn the ior^ , : 
"ir,ii,-is 

in equation2-79; each of the thre^e intensive parameters is then also a function of sand u. Elimination of s and , flo- among ttre three eluuiion, of state

ded to the more general case, and it
runting of variables. Suppose we have
Itensive variables

U :  U (5 ,  X r ,  X r , .  .  . ,  X , )

yielding, in turn, / * 1 equations of state

po  :  po (S ,  X1 ,  X2 , . . . ,  X , )

(3.e)

(3.10)

lf we choose the parameter tr of equation 2.I4 as \ : Ir/X,,we then have

ro :  Po(S /  Xt ,  Xr /Xt , .  .  . ,  x ,_1/  x t , I ) (3  .11 )

dU:  TdS + SdT + dxj + (3.r2)

But, in accordance with equation 2.6, we certainly know that

t

d u : T d s + l r , a x ,
j : r

Thus each of the (r + l).intensive parameters is a function of just /variables. Elimination of these r variables u-onf ,rr.-ir^I r) equations
:he intensive parameters.

evident and follows the sequence I
through 3.11.

A differential form of the relation among the intensive parameters canbe obtained directly from the Euler relation and is known as theGibbs-Duhem relation. Taking the infinitesimal variation oi"q,rution 3.5,we find

2 ,, or,
j : r

T

E P ,

(3  .13)
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whence, by subtraction we flnd the Gibbs-Duhem relation

SdT + XjdP j :  0

S d T - V d P + N d p : 0

d l t :  - t d T + u d P

I
j : 1

(3 .14)

For a single-component simple system, in particular, we have

(3 .15)

(3.16)

The variation in chemical potential is not independent of the variations in
temperature and pressure, but the variation of any one can be computed
in terms of the variations of the other two.

The Gibbs-Duhem relation presents the relationship among the inten-
sive parameters in differential form. Integration of this equation yields the
relation in explicit form, and this is a procedure alternative to that
presented in equations 3.9 through 3.11. In order to integrate the
Gibbs-Duhem relation, one must know the equations of state that enable
one to write the X,'s in terms of the P,'s, or vice versa.

The number of ihtensive parametersbapable of independent variation is
called the number of thermodynamic degrees of freedom of a given system.
A simple system of r components has r * 7 thermodynamic degrees of
freedom.

In the entropy representation the Gibbs-Duhem relation again states
that the sum of products of the extensive parameters and the differentials
of the corresponding intensive parameters vanishes.

i
j : 0

x jd4 :  o (3 .17)

,,(+) + vd(+) - (3 .18)

PROBLEMS

3.2-1. Find the relation among T, P, ar'd. p for the system with the fundamental
equatron

,r I  u|e\ 5+' : t F l 1 ' . ' '

or

E,*u(+):'
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3.3 SUMMARY OF FORMAL STRUCTURE

Let us now summarizethe structure of the thermodynamic formalism in
the energy representation. For the sake of clarity, and in order to be
explicit, we consider a single-component simple system. The fundamental
equation

u :  u(s,v,  N) (3.1e)

contains all thermodynamic information about a system. with the defini-
tions ?:0u/0s, and so forth, the fundamental equation implies three
equations of state

If two equations of state are known, the Gibbs-Duhem relation can be
integrated to obtain the third. The equation of state so obtained will
contain an undetermined integration constant. Thus two equations of
state are sufficient to determine the fundamental equation, exiept for an
undetermined constant.

A logically equivalent but more direct and generally more convenient
method of obtaining the fundamental equation when two equations of
state are given is by direct integration of the molar relation

T  :  T ( 5 , V ,  N ) :  Z ( s ,  u )

P  :  P ( S ,  V ,  N ) :  P ( s ,  u )

p  :  p ( , S ,  v ,  N ) :  p ( s ,  u )

d u : T d s -  P d u

u :  u ( s , u )

(3.20)

(3.2r)

(3.22)

(3.23)

Clearly, knowledge of. T : T(s, u) and p : p(s, u) yields a differential
equation in the three variables u, ,s, and u, and integrltion gives

(3.24)

which is a fundamental equation. Again, of course, we have an unde-
termined constant of integration.

It is always possible fo express the internal energy as a function of
parameters other than s, v, and N. Thus we could eliminate ,S from
U : U(5,V, N) and T: Z(^S, V, N) to obtain an equation of the form
U : U(T,V, N).However, I stress that such an equation is not a funda-
mental relation and does not contain all possible thermodynamic informa-
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(a)

FIGURE 3 1

(b) r= #

tion about the system. In fact, recalling the definition of Z as 0U/0S,we
see that U : U(T,V, N) actually is a partial differential equation. Even if
this equation were integrable, it would yield a fundamental equation with
undetermined functions. Thus knowledge of the relation U : U(S,V,N)
allows one to compute the relation U : U(T,V, N), but knowledge of
U : U(T,V, N) does not permit one inversely to compute U -

IJ(S,V, N). Associated with every equation there is both a truth value and
an informational content. Each of the equations [.I: U(S,V, N) and
U : II(T,V, N) may be true, but only the former has the optimum
informational content.

These statements are graphically evident if we focus, for instance, on
the dependence of Uon S at constant V and N. Let that dependence be
as shown in the solid curve in Fig. 3.1(a). This curve uniquely determines
the dependence of (J on T, shown in Fig. 3.1(b); for each point on the
U(S) curve there is a definite U and a definite slope T: 0U/05,
determining a point on the U(7) curve. Suppose, however, that we are
given the U(T) cuwe (an equation of state) and we seek to recover the
fundamental t(S) curve. Each of the dotted curves in Fig. 3.1(a) is
equally compatible with the glen U(T) curve, for all have the same slope
T at a given U. The curves differ by an arbitrary displacement, corre-
sponding to the arbitrary "constant of integration" in the solution of the
differential equation Il : U(AU/fS). Thus, Fig. 3.1(a) implies Fig. 3.1(b),
but the reverse is not true. Equivalently stated, only U: U(S) is a
fundamental relation. The formal structure is illustrated by consideration
of several speciflc and explicit systems in the following Sections of this
book.

Example
A particular system obeys the equations

t l
t l

/ l
/ /

/ /
/ /

U :  + P V
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and

- 1  A U 3 / 2, - :  
n * r ,

where A is a positive constant. Find the fundamental equation.

Solution
Writing the two equations in the form of equations of state in the entropy
representation (which is suggested by the appearance of. (J, V, and N as
independent parameters)

1
* :  ,q-r /2u-3/4ur /2
I

! :  ,n - r /zur /4u- r /2
T

Then the differential form of the molar fundamental equation (the analogue of
equation 3.23) is

1 P
d s : i d u + 7 d u

: 1-r/z(y-3/arr/2 4u + Zur/4u-L/2 tlu)

:4A-1/2d(ur /4ur /z)

s : 4 A - r / 2 u 7 / 4 u 7 / 2 + s o

S : 4A-L/2Ur/4Vr/?Nr/a + Nso

The reader should compare this method with the alternative technique of first
integrating the Gibbs-Duhem relation to obtain p(u,u), and then inserting the
three equations of state into the Euler equation.

Particular note should be taken of the manner in which ds is integrated to
obtain s. The equation for ds in terms of du and du is a partial dffirentiat
equation-it certainly cannot be integrated term by term, nor by any of the
familiar methods for ordinary differential equations in one independent variable.
We have integrated the equation by "inspection"; simply "recognizing" that
u-3/ai/2 du + 2ul/au-r/z du is the differential of ur/4uL/z.

PROBLEMS

3.3-1. A particular system obeys the two equations of state

3As2
t :  

u  ,

so that

and

the thermal equation of state
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and

P : +, the mechanical equation of state
U-

where z4 is constant.
a) Find fl, as a function of s and u, and then find the fundamental equation.
b) Find the fundamental equation of this system by direct integration of the
molar form of the equation.

3.3-2. lt is found that a particular system obeys the relations

U :  P V
and

P :  B T 2
where B is constant. Find the fundamental equation of this system.

3.3-3. A system obeys the equations

P :  _ NU
NV _  ZAVU

and
y 7r/2y7/2

T:2Cfr_ r*eAU/N
Find the fundamental equation.
Hint: To integrate, let

s :  D u n u - e - A u

where D, n, and rn are constants to be determined.
3.3-4. A system obeys the two equationt u: |Pu and ur/2: BTur/3. Find the
fundamental equation of this system.

3.4 THE SIMPLE IDEAL GAS AND
MULTICOMPONENT SIMPLE IDEAL GASES

A "simple ideal gas" is characterized by the two equations

PV : NRT (3.2s)

and

U: cNRT (3.26)

where c is aconstant and R is the "universal gas constant" (R : Ntka:
8.3144 J/mole K).

Gases composed of noninteracting monatomic atoms (such as He, Ar,
Ne) are observed to satisfy equations 3.25 and 3.26 at temperatures such
that k uT is small compared to electronic excitation energies (i.e., T S 104
K), and at low or moderate pressures. All such "monatomic ideal gases"
have a value of c: 1.
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Under somewhat more restrictive conditions of temperature and pres-
sure other real gases may conform to the simple ideal gas equations 3.25
and,3.26, but with other values of the constant c. For diatomic molecules
(such as O, or NO) there tends to be a considerable region of temperature
for which c = i and another region of higher temperature for which c = +.
(with the boundary betw-een these regions generally occurring at tempera-
tures on the order of 103 f).

Equations 3.25 and 3.26 permit us to determine the fundamental
equation. The explicit appearance of the energy U in one equation of state
(equation 3.26) suggests the entropy representation. Rewriting the equa-
tions in the correspondingly appropriate form

(3.27)

(3.28)

From these two entropic equations of state we find the third equation of
state

f 
: runctionof u,u

by integration of the Gibbs-Duhem relation
t,(+): uo(+) . ,r(+)

and integrating

l : ,^(#) : +
l :  n(#) :  +

s: ( i) , .(+),-(#)"

, ( + ) : u x l # ) d u * u ' ( - # ) o u :  - , R +  -  R Q

t ,  | t , \  u
:  - l  + l  :  - c R l n -
I  \ I / o  n o

(3.2e)

(3.30)

Finally, the three equations of state will be substituted into the Euler
equation

(3.31)

Proceeding in this way the Gibbs-Duhem relation (3.30) becomes

-  R lna
uo

(3.32)

(3.33)

Here uo and uo are the parameters of a fixed reference state, and (p/Do
arises as an undetermined constant of integration. Then, from the Euler
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relation (3.31)

S : N s o *

where

s o :  ( c  +  l ) R  - ( + ) , (3.3s)

Equation 3.34 is the desired fundamental equation; if the integration
constant s0 were known equation 3.34 would contain all possible thermo-
dynamic information about a simple ideal gas.

This procedure is neither the sole method, nor even the preferred
method. Alternatively, and more directly, we could integrate the molar
equation

(3.36)

which, in the present case, becomes

(3.37)

giving, on integration,

(3.38)

This equation is equivalent to equation 3.34.
It should, perhaps, be noted that equation 3.37 is integrable term by

term, despite our injunction (in Example 3) that such an approach
generally is not possible. The segregation of the independent variables r,r
and u in separate terms in equation 3.37 is a fortunate but unusual

NR'n l( # )' (#,)( # ) 
-"."]

,,: (i l*.G)*

d , : , ( * ) * . ( f  ) ,

t

r :  r o  *  c R r n  ( h ) . ^ " ( * )

(3.34)

s: fr,sr, *(!",,,)^*4 + fnn-(#)

(;+",1^'U : (3.3e)
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Elimination of I between these equations gives a single equation of the
standard form S : S(U, V, N1, Nr,...).

Comparison of the individual terms of equations 3.39 with the expres-
sion for the entropy of a single-component ideal gas leads to the following
interpretation (often referred to as Gibbs's Theorem). The entropy of a
mixture of ideal gases is the sum of the entropies that each gas would haue if
it alone were to occupy the uolume V at temperature T. The theorem is, in
fact, true for all ideal gases (Chapter 13).

It is also of interest to note that the first of equations 3.39 can be
written in the form

+ NR t"#- nfr,rrr" f
(3.40)

and the last term is known as the "entropy of mixing." It represents the
difference in entropies between that of a mixture of gases aid that o7 a
collection of separate gases each at the same temperature and the same
density as the original mixture Ni/1: N/V, (and hence at the same
pressure as the original mixture); see Problem 3.4-1.5. The ciose similaritv.
and the important distinction, between Gibbs's theorem and the interpri-
tation of the entropy of mixing of ideal gases should be noted carefully by
the reader. An application of the entropy of mixing to the problem of
isotope separation will be given in Section 4.4 (Example 4).

Gibbs's theorem is demonstrated very neatly by a simple ,.thought
experiment." A cylinder (Fig. 3.2) of total volume2vo is divided into four
chambers (designated as a,8,y,8) by a fixed wall in the center and by
two sliding walls. The two sliding walls are coupled together so that their
distance apart is always one half the length of the cylinder (V,: \ and
Vp: V). Initially, the two sliding walls are coincident with the left end
and the central fixed partitlgn, respectively, so that V,: Vr:0. The
chamber B, of volume Vo, is filled with a mixture of No moles of a simple
ideal gas 4j;"d No moles of a simple ideal gas B. chamber D is initially
evacuated. The entire system is maintained at temperature T.

The left-hand sliding wall is permeable to component A, but not to
component B. The fixed partition is permeable to component .8, but not
to component A. The right-hand sliding wall is impermeable to either
component.

The coupled sliding walls are then pushed quasi-statically to the right
untll Vu: V6:0 and Vo: V": Zo. Chamber a then contains pure I
and chamber y contains puri: B. The initial mixture, of volume Zo,
thereby is separated into two pure components, each of volume Zo.
According to Gibbs's theorem the final entropy should be equal to the
initial entropy, and we shall now see directly that this is, in faCt, true.

S: fnsr ,* (1up,)^*#



,l
l:1
t:j
tii
lii:l
l i : l

$

\ l
\  e+a f i
l '  \

t l Vacuum
6

oar

70 Some Formal Relationships and Sample Systems

Fixed wall

Coupl ing bar

FIGURE 3.2

Separation of a mixture of ideal gases,
demonstrating Gibbs's theorem.

We first note that the second of equations 3.39, stating that the energy
is a function of only T and the mole number, ensures that the final energy
is equal to the initial energy of the system. Thus - 7A.S is equal to the
work done in moving the coupled walls.

The condition of equilibrium with respect to transfer of component A
across the left-hand wall is pr.o : Ft.B. It is left to Problem 3.4-74 to
show that the conditions p,,4,d : Ft,p and p,",u: FB,, imply that

Po:  P,  and Pu:2Po

That is, the total force on the coupled moueable walls (P, - PB + P,)
uanishes. Thus no work is done in moving the walls, and consequently no
entropy change accompanies the process. The entropy of the original
mixture of A and B, in a common volume Zo, is precisely equal to the
entropy of pure A and pure .8, each in a separate volume Zo. This is
Gibbs's theorem.

Finally, we note that the simple ideal gas considered in this section is a
special case of the general ideal gas, which encompasses a very wide class
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of real gases at low or moderate pressures. The general ideal gas is again
characteized by the mechanical equation of state PV : NRT (equation
3.25), and by an energy that again is a function of the temperature
only-but not simply a linear function. The general ideal gas will be
discussed in detail in Chapter 13, and statistical mechanical derivations of
the fundamental equations will emerge in Chapter 16.

PROBLEMS

Note that Problems 3.4-1, 3.4-2, 3.4-3, and 3.4-8 refer to "quasi-static
processes"; such processes are to be interpreted not as real processes but merely
as loci of equilibrium states. Thus we can apply thermodynamics to such
quasi-static "processes"; the work done in a quasi-static change of volume (from
V, to Vr) is W : - J P dV and the heat transfer is 0 : JT ds.The relationship of
real processes to these idealized "quasi-static processes" will be discussed in
Chapter 4.

3.4-1. A "constant volume ideal gas thermometer" is constructed as shown
(schematically) in Fig. 3.3. The bulb containing the gas is constructed of a
material with a negligibly small coefficient of thermal expansion. The point ,4 is a
reference point marked on the stem of the bulb. The bulb is connected by
a flexible tube to a reservoir of liquid mercury, open to the atmosphere. The
mercury reservoir is raised or lowered until the mercury miniscus coincides with
the reference point A.The height h of. the mercury column is then read.
a) Show that the pressure of the gas is the sum of the external (atmospheric)
pressure plus the height h of the mercury column multiplied by the weight per
unit volume of mercury (as measured at the temperature of interest).
b) Using the equation of state of the ideal gas, explain how the temperature of
the gas is then evaluated.

FIGURE 3.3

Constaat-volume ideal gas thermometer.
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c) Describe a "constant pressure ideal gas thermometer" (in which a changing_
volume is directly measured at constant pressure).

3.4-2. Show that the relation between the volume and the pressure of a mon-
atomic ideal gas undergoing a quasi-static adiabatic compression (dO : T dS : 0,
S : constant) is

_ pu5/3 : (pousolt"_z,o/3R)"zs/3n : constant

Sketch a family of such "adiabats" in a graph of P versus Z. Find the
corresponding relation for a simple ideal gas.

3.4-3. Two moles of a monatomic ideal gas are at a temperature of OoC and a
volume of 45 liters. The gas is expanded adiabatically (dQ :0) and quasi-stati-
cally until its temperature falls to - 50oC. What are its initial and final pressures
and its final volume?

Answer:
P, :  0.1 MPa,V,:  61 x 10-3 m3

3.4-4. By carrying out the integral IP dV, compute the work done by the gas in
Problem 3.4-3. Also compute the initial and final energies, and corroborate that
the difference in these energies is the work done.

3.4-5. In a particular engine a gas is compressed in the initial stroke of the piston.
Measurements of the instantaneous temperature, carried out during the compres-
sion, reveal that the temperature increases according to

where Zo and Vo are the initial temperature and volume, and 4 is a constant. The
gas is compressed to the volume Iz, (where V, < V).Assume the gas to be
monatomic ideal, and assume the process to be quasi-static.
a) Calculate the work W done on the gas.
b) Calculate the change in energy AU of the gas.
c) Calculate the heat transfer Q to the gas (through the cylinder walls) by using
the results of (a) and (b).
d) Calculate the heat transfer directly by integrating dQ : TdS.
e) From the result of (c) or (d), for what value of 4 is Q : 0? Show that for this
value of q the locus traversed coincides with an adiabat (as calculated in Problem
3.4-2).

3.4-6. Find the three equations of state of the "simple ideal gas" (equation 3.34).
Show that these equations of state satisfy the Euler relation.

3.4-7. Find the four equations of state of a two-component mixture of simple
ideal gases (equations 3.39). Show that these equations of state satisfy the Euler
relation.

,: (#,)'^
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3.4-8. If a monatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume f.rom V to \V, and if the walls are rigid and
adiabatic, what is the ratio of the initial and final pressures? what is the ratio of
the initial and final temperatures? What is the difference of the initial and final
entropies?

3.4-9. A tank has a volume of 0.1 m3 and is filled with He gas at a pressure of
5 x 106 Pa. A second tank has a volume of 0.15 m3 and is filled with He gas at a
pressure of 6 x 106 Pa. A valve connecting the two tanks is opened. Assuming He
to be a monatomic'ideal gas and the walls of the tanks to be adiabatic and rigid,
find the final pressure of the system.
.Fllnl: Note that the internal energy is constant.

Answer:
Pf : 5.6 x 106 Pa

3.4-10.
a) If the temperatures within the two tanks of Problem 3.4-9, before opening the
valve, had been I: 300 K and 350 K, respectively, what would the final
temperature be?
D) If the first tank had contained He at an initial temperature of 300 K, and the
second had contained a diatomic ideal gas with c:5/2 and an initial tempera-
ture of 350 K, what would the final temperature be?

Answer:

1),7,=139[
3.4-11. Show that the pressure of a multicomponent simple ideal gas can be
written as the sum of "partial pressures" P, where P., = N.RT/ Z. These "partial
pressures" are purely formal quantities not subject to experimental observation.
(From the mechanistic viewpoint of kinetic theory the partial pressure p, is the
contribution to the total pressure that results from bombardment of the wall by
molecules of species i-a distinction that can be made only when the molecules
are noninteracting, as in an ideal gas.)

and find the explicit form of the "function of 7."
Show that lti can be expressed in terms of the "partial pressure', (problem

3.4-11) and the temperature.

3.4-13. An impermeable, diathermal, and rigid partition divides a container into
two subvolumes, each of volume V. The subvolumes contain, respectively, one
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mole of H, and three moles of Ne. The system is maintained at constant
temperature 2" The partition is suddenly made permeable to Hr, but not to Ne,
and equilibrium is allowed to reestablish. Find the mole numbers and the
pressures.

3.4-14. Use the results of Problems 3.4-11 and 3.4-72 to establish the results
Po : P, and Pu : 2Po in the demonstration of Gibbs's theorem at the end of this
section.

3.4-15. An impermeable, diathermal and rigid partition divides a container into
two subvolumes, of volumes nVo and mVo. The subvolumes contain, respectively,
n moles of H, and n moles of Ne, each to be considered as a simple ideal gas.
The system is maintained at constant temperature T. The partition is suddenly
ruptured and equilibrium is allowed to re-establish. Find the initial pressure in
each subvolume and the final pressure. Find the change in entropy of the system.
How is this result related to the "entropy of mixing" (the last term in equation
3.40)?

3.5 THE "IDEAL VAN DER WAALS FLUID"

Real gases seldom satisfy the ideal gas equation of state except in the
limit of low density. An improvement on the mechanical equation of state
(3.28) was suggested by J. D. van der Waals in 1873.

RT
(3.41)P :

u - b t)2

Here a and b are two empirical constants characteristic of the particular
gas. In strictly quantitative terms the success of the equation has been
modest, and for detailed practical applications it has been supplanted by
more complicated empirical equations with five or more empirical con-
stants. Nevertheless the van der Waals equation is remarkably successful
in representing the qualitative features of real fluids, including the
gas-liquid phase transition.

The heuristic reasoning that underlies the van der Waals equation is
intuitively plausible and informative, although that reasoning lies outside
,,the domain of thermodynamics. The ideal gas equation P : RT/u is
known to follow from a model of point molecules moving independently
and colliding with the walls to exert the pressure P. Two simple correc-
tions to this picture are plausible. The first correction recognizes that the
molecules are not point particles, brrt that each has a nonzero volume
b/Nn.Accordingly, the volume V in the ideal gas equation is replaced by
V - Nb; the total volume diminished by the volume Nb occupied by the
molecules themselves.

The second correction arises from the existence of forces between the
molecules. A molecule in the interior of the vessel is acted upon by
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intermolecular forces in all directions, which thereby tend to cancel. But a
molecule approaching the wall of the container experiences a net back-
ward attraction to the remaining molecules, and this force in turn reduces
the effective pressure that the molecule exerts on colliding with the
container wall. This diminution of the pressure should be proportional to
the number of interacting pairs of molecules, or upon the square of the
number of molecules per unit volume (l/u2); hence the second term in
the van der Waals equation.

Statistical mechanics provides a more quantitative and formal deriva-
tion of the van der Waals equation, but it also reveals that there are an
infinite series of higher order corrections beyond those given in equation
3.41. The truncation of the higher order terms to give the simple van der
Waals equation results in an equation with appropriate qualitatiue fea-
tures and with reasonable (but not optimum) quantitative accuracy.

The van der Waals equation must be supplemented with a thermal
equation of state in order to define the system fully. It is instructive not
simply to appeal to experiment, but rather to inquire as to the simplest
possible (and reasonable) thermal equation of state that can be paired
with the van der Waals equation of state. Unfortunately we are not free
simply to adopt the thermal equation of state of an ideal gas, for
thermodynamic formalism imposes a consistency condition between the
two equations of state. We shall be forced to alter the ideal gas equation
slightly.

We write the van der Waals equation as

a I
u - b u 2 T

(3.42)

and the sought for additional equation of state should be of the form

P
T

d ' : + a u + l d u

1  . .
7 :  l \ u ' u ) (3.43)

These two equations would permit us to integrate the molar equation

(3.44)

is to be a perfect
partial derivatives

to obtain the fundamental equation. However, if ds
differential, it is required that the mixed second-order
should be equal

02s 02s
A ,  A " :  A "  A , (3.4s)
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This condition can be written as

g 1 \
U 2 T I ,

a  /  1 \  a  t P \
a r \T  )  " :  au  t 7 / , (3.46)

(3.47)

a t 7 \  a l R
|  :  - l  _

a u \ T l " -  a " l u - b

: -3*G),

dDG) ":rh(+), (3.48)

That is, the functionl/T must depend on the two variablesl/u and u/a
in such-a_yay fat the two derivatives are equal. one possible way'of
accomplishinq this is to have 7/T depend only on the sum (l/u + u/a).
we first recall that for a simple ideal gas L/T: cR/u; this suggests'that
the simplest possible change consistent with the van der waals d{uation is

l c R
T  u * a / u (3.4e)

For purposes of illustration throughout this text we shall refer to the
hypothetical system characterized by the van der Waals equation of state
(3.47) and by equation 3.49 as the "ideal van der Waals fluid."

we should note that equation 3.41, although referred to as the " van der
waals_equation of state," is not in the appropriate form of an equation of
state. However, from equations 3.49 and 3.42 we obtain

R acR
(3.50)u - b uu2 + au

The two preceding equations are the proper equations of state in the
entropy representation, expressingT/T and P/T as functions of r and u.

with the two equations of state we are now able to obtain the
fundarnental relation. It is left to the reader to show that

S :  N R t n [ ( u  -  b ) ( u  +  a / u ) " | *  N s o (3.s1)

P_ :
T

where so is a constant. As in the case of the ideal gas the fundamental
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TABLE 3.7
Van der Waals C-onstants and Molar Heat
Capacities of Common Gases"

Gas a (Pa-m6) b (10- 6m3)

He
Ne
H2
A
N2
o2
co
Cot
NrO
HrO
Clz
SO,

23.7
L7. l
26.6
30.2
38.5
32.6
39.9
42.7
44.2
30.5
56.3
56.4

1.5
1 .5
2.5
1.5
2.5
2.5
2.5
3.5
3.5
3.1
2.8
3.5

0.00346
0.0215
0.0248
0.r32
0.136
0.138
0.151
0.401
0.384
0.54
0.659

r 0.680
d Adapted from Paul S. Epstein, Texthook ol Thermo$tnamics,
Wiley, New York, 1937.

equation does not satisfy the Nernst theorem, and it cannot be valid at
very low temperatures.

We shall see later (in Chapter 9) that the ideal van der Waals fluid is
unstable in certain regions of temperature and pressure, and that it
spontaneously separates into two phases ("liquid" and "gas"). The funda-
mental equation (3.51) is a very rich one for the illustration of thermody-
namic principles.

The van der Waals constants for various real gases are given in Table
3.1. The constants a and b are obtained by empirical curve fitting to the
van der Waals isotherms in the vicinity of 273 K; they represent more
distant isotherms less satisfactorily. The values of. c arc based on the
molar heat capacities at room temperatures.

PROBLEMS

3.5-1. Are each of the listed pairs of equations of state compatible (recall
equation 3.46)1 lt so, find the fundamental equation of the system.
a )  u :  aPu  and  Pu2 :  bT
b) u : aPu2 and Puz: bT

u  c i b u u
c)  I ' :  -  - - - - - : -=-andZ:-+,'  u  a + D u u  a + D u u

3.5-2. Find the relationship between the volume and the temperature of an ideal
van der Waals fluid in a quasi-static adiabatic expansion (i.e., in an isentropic
expansion, wrfh dQ : T dS : 0, or S : constant).
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3.5-3. Repeat Problem 3.4-3 f.or COr, rather than for a monatomic ideal gas.
Assume COr can be represented by an.ideal van der Waals fluid with constants as
given in Table 3.1.

At what approximate pressure would the term (- o/r,) in the van der Waals
equation of state make a I07o cofiection to the pressure at room temperature?

Answer:
Vr :  0 '091m3

L3.5-4. Repeat parts (a), (b), and (c) of problem 3.4-5, assuming that 4 : - i
and that the gas is an ideal van der Waals fluid.

Show that your results for LU and for w (and hence for e) reduce to the
results of Problem 3.4-5 (for ]) as the van der waals constants a and b go
tozeto, and c: J. Recall that ln(1 *.x) = x, for small x.
3.5-5. consider a van der waals gas contained in the apparatus described in
Problem 3.4-1 (i.e., in the "constant volume gas thermometer,').
a) Assuming it to be known in advance that the gas obeys a van der waals
equation of state, show that knowledge of. two reference temperatures enables one
to evaluate the van der Waals constants a and b.
b) Knowing the constants a and b, show that the apparatus can then be used as
a thermometer, to measure any other temperature.
c) Show that knowledge of three reference temperatures enables one to determine
whether a gas satisfies the van der waals equation of state, and if it does, enables
one to measure any other temperature.
3.5-6. One mole of a monatomic ideal gas and one mole of Cl, arc contained in a
rigid cylinder and are separated by a moveable internal piston. If the gases are at
a temperature of 300 K the piston is observed to be precisely in the center of the
cylinder. Find the pressure of each gas. Treat Cl, as a van der Waals gas (see
Table 3.1).

P:3si i iy"{;

3-6 ELECTROMAGNETIC RADIATION

If the walls of any "empty" vessel are maintained at a temperaturc T it
is found that the vessel is, in fact, the repository of electromagnetic
energy. The quantum theorist might consider the vessel as containing
photons, the engineer might view the vessel as a resonant cavity support-
ing electromagnetic modes, whereas the classical thermodynamicist might
eschew any such mechanistic models. From any viewpoint, the empir-
ical equations of state of such an electromagnetic cavity are the
" Stefan-Boltzmann Law"

IJ:  bVTa (3.52)
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and

(3.53)

where b is a particular constant (b :7.56 x 10-16 J/nf K\ which will
be evaluated from basic principles in Section 16.8. It will be noted that
these empirical equations of state are functions of U and V, but not of N.
This observation calls our attention to the fact that in the "empty" cavity
there exist no conserved particles to be counted by a parameter N. The
electromagnetic radiation within the cavity is governed by a fundamental
equation of the form S : S(U, Z) in which there are only two rather than
three independent extensive parameters!

For electromagnetic radiation the two known equations of state con-
stitute a complete set, which need only be substituted in the truncated
Euler relation

U
3V

P :

s : + u + | v (3.s4)

to provide a fundamental relation. For this purpose we rewrite equations
3.52 and 3.53 in the appropriate form of entropic equations of state

(3.ss)

and

(3.s6)

that the fundamental relation becomes, on substitution into 3.54

g : tbL/4(J3/ayr/+ (3.57)

PROBLEMS

3.6-1. The universe is considered by cosmologists to be an expanding electromag'
netic cavity containing radiation that now is at a temperature of 2.7 K. What will
be the temperature of the radiation when the volume of the universe is twice its
present value? Assume the expansion to be isentropic (this being a nonobvious
prediction of cosmological model calculations).

3-6.2. Assuming the electromagnetic radiation filling the universe to be in equi-
librium at T : 2.7 K, what is the pressure associated with this radiation? Express
the answer both in pascals and in atmospheres.

l: u"^(#)"^

'r: Iu"'(+)"'
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3.6-3. The density of matter (primarily hydrogen atoms) in intergalactic space is
such that its contribution to the pressure is of the order of 10-23 Pa.
a) What is the approximate density of matter (in atoms/m3) in intergalactic
space?
b) what is the ratio of the kinetic energy of matter to the energy of radiation in
intergalactic space? (Recall Problems 3.6-1 and 3.6-2.)
c) What is the ratio of the total matter energy (i.e., the sum of the kinetic energy
plus the relativistic energy mcz) to the energy of radiation in intergalactic space?

3.7 THE "RUBBER BAND'

A somewhat different utility of the thermodynamic formalism is il-
lustrated by consideration of the physical properties of a rubber band;
thermodynamics constrains and guides the construction of simple phe-
nomenological models for physical systems.

Let us suppose that we are interested in building a descriptive model for
the properties of a rubber band. The rubber band consists of a bundle of
long-chain polymer molecules. The quantities of macroscopic interest are
the length L, the tension V, the temperature 7, and the energy U of the
rubber band. The length plays a role analogous to the volume and the
tension plays a role analogous to the negative pressure (7- - p). An
analogue of the mole number might be associated with the number of
monomer units in the rubber band (but that number is not generally
variable and it can be taken here as constant and suppressed in the
analysis).

A qualitative representation of experimental observations can be sum-
marized in two properties. First, at constant length the tension inueases
with the temperature-a rather startling property which is in striking
contrast to the behavior of a stretched metallic wire. Second, the energy is
observed to be essentially independent of the length, at least for lengths
shorter than the "elastic limit" of the rubber band (a length corresponding
to the " unkinking" or straightening of the polymer chains).

The simplest representation of the latter observation would be the
equation

U:  cLoT (3.s8)
where c is a constant and Zo (also constant) is the unstretched length of
the rubber band. The linearity of the length with tension, between the
unstretched length Zo and the elastic limit length Zr, is represented by

(3.5e)

where b is a constant. The insertion of the factor 7 in this equation
(rather than T2 or some other function of Z) is dictated by the thermody-

g: br#,  Lo.  L < L,
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namic condition of consistency of the two equations of state. That is, as in
equation 3.46

a  t 7 \  a  |  . r \
m \ t ) , : 7 i ( -  z / , (3.60)

which dictates the linear factor I in equation (3.59). Then

ot : + au - { ar :,to# - u}}},ar

and the fundamental equation correspondingly is

s : so * cLot"i l- 
M, _6(r - 4)'

(3 .61)

(3.62)

Although this fundamental equation has been constructed on the basis
only of the most qualitative of information, it does represent empirical
properties reasonably and, most important, consistently. The model il-
lustrates the manner in which thermodynamics guides the scientist in
elementary model building.

A somewhat more sophisticated model of polymer elasticity will be
derived by statistical mechanical methods in Chapter 15.

PROBLEMS

3.7-1. For the rubber band model, calculate the fractional change in (L - Lo)
that results from an increase 6z in temperature, at constant tension. Express the
resulf in terms of the length and the temperatwe.
3.7-2, A rubber band is stretched by an amount dL, at constant ?". calculate the
heat transfer dQ to the rubber band. Also calculate the work done. How are these
related and why?

3.7-3. If the energy of the unstretched rubber band were found to increase qua-
dratically with f, so that equation 3.58 were to be replaced by U : cL672, would
equation 3.59 require alteration? Again find the fundamental equation of the
rubber band.

3.8 UNCONSTRAINABI,E VARIABLES; MAGNETIC SYSTEMS

In the preceding sections we have seen examples of several specific
systems, emphasizing the great diversity of types of systems to which
thermodynamics applies and illustrating the constraints on analytic mod-
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eling of simple systems. In this section we give an example of a magnetic
system. Here we have an additional purpose, for although the general
structure of thermodynamics is represented by the examples already given,
particular "idiosyncrasies" are associated with certain thermodynamic
parameters. Magnetic systems are particularly prone to such individual
peculiarities, and they well illustrate the special considerations that occa-
sionally are required.

In order to ensure magnetic homogeneity we focus attention on el-
lipsoidal samples in homogeneous external fields, with one symmetry axis
of the sample parallel to the external field. For simplicity we assume no
magnetocrystalline anisotropy, or, if such exists, that the "easy axis" lies
parallel to the external field. Furthennore we initially consider only
paramagnetic or diamagnetic systems-that is, systems in which the
magnetization vanishes in the absence of an externally imposed magnetic
field. In our eventual consideration of phase transitions we shall include
the transition to the ferromagnetic phase, in which the system develops a
spontaneous magnetization.

As shown in Appendix B, the extensive parameter that characterizes the
magnetic state is the magnetic dipole moment 1 of the system. The
fundamental equation of the system is of the form U : U(,S, V,I, N).ln
the more general case of an ellipsoidal sample that is not coaxial with the
external field, the single parameter 1 would be replaced by the three
cartesian coordinates of the magnetic moment: U(5,V,1,,1,, /,, N). The
thermodynamic structure of the problem is most convenienily illustrated
in the one-parameter case.

The intensive parameter conjugate to the magnetic moment -I is .B", the
external magnetic field that would exist in the absence of the system

B " : (3.63)

The unit of B" is the tesla (T), and the units of l are Joules/Tesla (J/T).
It is necessary to note a subtlety of definition implicit in these identifi-

cations of extensive and intensive parameters (see Appendix B). The
energy U is here construed as the energy of the material system alone; in
addition the " vacuum" occupied by the system must be assigned an
energy itt'rn?V (where po, the permeability of free space, has the value
lro:4T x 10-7 tesla-meters/ampere). Thus th-e total energt within the
spatial region occupied by a system is U * ittttn?V. Whether the " vacuum
term" in the energy is associated with the system or is treated separately
(as we do) is a matter of arbitrary choice, but considerable confusion can
arise if different conventions are not carefully distinguished. To repeat, the
energy U is the change in energy within a particular region in the field
when-the material sysiem is introduced; it extludes the energy i1tton"')V ot
the region prior to the introduction of the system.

tPu\
\  o I  I  ' . r . *
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The Euler relation for a magnetic system is now

U : T S - P V + B " I + p N

and the Gibbs-Duhem relation is

(3.64)

S d T - V d P + I d B " + N d p : g (3.65)

(r: NRroexr[* . 
h]

(3.66)

where 7o and 1o are positive constants. This model does not describe anv
particular 9gy" system-it is devised to provide a simple, tractabll
model on which examples and problems car be based, u.td to illustrate
characteristic thermomagletic interactions. we shall leave it to the prob-
lems to explore some of these properties.

. with the magnetic c_?s9 always in mind as a prototype for generaliza-
tions, we return to exptcit consideration of simple sysiems.
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PROBLEMS

3.8-1. Calculate the three equations of state of the paramagnetic model of
equation 3.66. That is, calculate f(S,1, N), 4(S,1, N), and p(S, /, N). (Note
that the fundamental equation of this problem is independent of V, and that
more generally there would be four equations of state.) Show that the three
equations of state satisfy the Euler relation.

3.8-2. Repeat Problem 3.8-1 for a system with the fundamental equation

U : +I'* Neexp (2slNR)
zNx

where 1 and e are positive constants.

3.9 MOLAR HEAT CAPACITY AND OTI{ER DERIVATIVES

The first derivatives of the fundamental equation have been seen to
have important physical significance. The various second derivatives are
descriptive of material properties, and these second derivatives often are
the quantities of most direct physical interest. Accordingly we exhibit a
few particularly useful second derivatives and illustrate their utility. In
Chapter 7 we shall return to study the formal structure of such second
derivatives, demonstrating that only a small number are independent and
that all others can be related to these few by a systematic "reduction
scheme." For simple nonmagnetic systems the basic set of derivatives (to
which a wide set of others can be related) are just three.

The cofficient of thermal expansion is defined by

(3.67)

The coefficient of thermal expansion is the fractional increase in the
volume per unit increase in the temperature of a system maintained at
constant pressure (and constant mole numbers).

The isothermal compressibility is defined by

K r = (3 .68)

The isothermal compressibility is the fractional decrease in volume per
unit increase in pressure at constant temperature.

The molar heat capacity at constant pressure is defined by

7 l 0 u \  I I A V \o : - - r \ n ) r : v \ n ) ,

-:(#).: - +(#).

, ,=r(#), :  #(#), :  #(#), (3.6e)
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The molar heat capacity at constant pressure is the quasi-static heat flux
per mole required to produce unit increase in the temperature of a system
maintained at constant pressure.

For systems of constant mole number all other second derivatives can
be expressed in terms of these three, and these three are therefore
normally tabulated as functions of temperature and pressure for a wide
variety of materials.

The origin of the relationships among second derivatives can be under-
sjgod in principle at this point, although we postpone a full exploration to
Chapter 7. Perhaps the simplest such relationship is the identily

(3 .70)

which follows directly from the elementary theorem of calculus to the
effect that the two mixed second partial derivatives of u with respect to z
and S are equal

(3.71)
a  l a u \  a
av \N  /  

:  as
The two quantities appearing in equation (3.70) have direct physical

interpretations and each can be measureg.-Tl" quantity (Af7AV1i,, is

I  a T \  |  A P \
\m ) , . " :  - l a s / , , ^

A U \- l
av l

#(+)u*: *(+)..
The analogue of equation 3.70, in the entropy representation, is

(3.72)

and we recognize that this is precisely the identity that we invoked in
equation 3.46 in our quest for a thermal equation of state to be paired
with the van der Waals equation.

In chapter 7 we show in considerable detail that these equalities are
prototypes ,of. a general class of analogous relationships refirred to as
Maxwell relations. Although the Maxwell relations have the simple form
of equality of two derivatives, they, in turn, are degenerate cases oi a more
general theorem that asserts that there must exist a relation among any
four derivatives. These general relations will permit any second derivativb
(at constant N) to be expressed in terms of the basic set cpt at and rcr.
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To illustrate such anticipated relationships we first introduce two ad-
ditional second derivatives of practical interest; the adiabatic com-
pressibility ,cs and the molar heat capacity at cgustant volume c,.

The adiabatic compressibility is defined b!--

: -+(#), (3.73)

This quantity characterizes the fractional decrease in volume associated
with an isentropic increase in pressure (i.e., for a system that is adiabati-
cally insulated).

The molar heat capacity at constant volume, defined by

c u = (3 .74)

measures the quasi-static heat flux per mole required to produce unit
increase in the temperature of a system maintained at constant volume.

In Chapter 7 we show that

K":  -  : (#) ,

,(#).: #(#) .: *(f,).

and

Again, our purpose here is not to focus on the detailed relationships (3.75)
and (3.76), but to introduce definitions of co, c, and K7, to call attention
to the fact that cD) d, and r, are normally tabulated as functions of ?
and P, and to strbss that all other derivatives (such as cu and r") can be
related to cD, c, and rr. A systematic approach to all such equalities, and
a mnemonib device for recalling them as needed, is presented in Chap-
ter 7.

Problem 3.9-6 is particularly recommended to the student.

Example
For a particular material cp, d, drrd K, are tabulated as functions of T and P.
Find the molar volume u as a function of I and P.

Solution
We consider the "T-P plane." The quantities cp, a, and Kr are known at all
points in the plane, and we seek to evaluate u(7, P) at an arbitrary point in the
plane. Then

(3 .75)

(3.76)

d,: (#),0, .( f f i )  ,a,
:  -urcrdP *  uadT
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&)
U

:  - ,erdP I  adT

If (fo,Po) is a chosen reference point in the plane, and if (7,,p,) is a point of
interest, we can integrate along the path shown (or any other convenient path).
For the,path that we have chosen the term in dp vanishes for the ,,horizontal"
section of the path, and the term in d? vanishes for the ,,vertical" section of the
path, so that

I + : I{"tr, P) dr - I'o'.,{r', P) dP

64 : Ii'"tr, po) dr - Ii,'.,1r,, p) dp

The value of the molar volume at the reference point (uo) must be specified; we
are then able to relate all other volumes to this volume.

T.--+ 
T'

PROBLEMS

3.9-1.
a) Show that for the multicomponent simple ideal gas

c u :  d R

a :  t / T

tcr:  l /P

t
P

Po
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e l
and K s : E + L  P

c p :  ( E  +  1 ) R where d : Dcjxj:
J

b) What is the value of d for a monatomic ideal gas?
c) Using the values found in part (a), corroborate equations 3.'75 and 3.76.

3.9-2. Corroborate equation 3.70 for a multicomponent simple ideal gas, showing
that both the right- and left-hand members of the equation equal -T/EV (where
c is defined in Problem 3.9-1).

3.9-3. Compute the coefficient of expansion a and the isothermal compressibility
r, in terms of P and u for a system with the van der Waals equation of state
(equation 3.41).

3.9-4. Compute cp, cyl K5, ard rTfor the system in Problem 1.10-1(a). With these
values corroborate the validity of equations 3.75 and 3.76.

3.9-5. From equations 3.75 and 3.76 show that

cp/cr: rcr/rcs

3.9-6. A simple fundamental equation that exhibits some of the qualitative
properties of typical crystaline solids is

g -  , lgb(u-ud2r4, /3,  tna

where A, b, and uo are positive constants.
a) Show that the system satisfies the Nernst theorem.
b) Show that c, is proportional to T3 at low temperature. This is commonly
observed (and was explained by P. Debye by a statistical mechanical analysis,
which will be developed in Chapter 16).
c) Show that c, -, 3k B at high temperatures. This is the "equipartition value,"
which is observed and which will be demonstrated by statistical mechanical
analysis in Chapter 16.
d) Show that for zero pressure the coefficient of thermal expansion vanishes in
this model-a result that is incorrect. Hint: C.alculate the value of u at P :0.

3.9-7. The density of mercury at various temperatures is given here in grams/crrt.

13.6202 (-10'C) 73.s2r7 (30'C) 13.3283 (110"C)

13.s955 (0"C) 13.4973 (40"C) 13.1148 (200"C)

13.s708 (10'C) 73.4729 (50"C) 12.8806 (300'C)

73.5462 (20.C) 13.3522 (100"C) 72.8572 (310'C)

Calculate a at 0"C, at 45"C, at 105oC, and at 305"C.
Should the stem of a mercury-in-glass thermometer be marked off in equal

divisions for equal temperature intervals if the coefficient of thermal expansion of
glass is assumed to be strictly constant?

f r,,",
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3.9-8. For a particular material cp, a, zrrd K.r can be represented empirically by
power series in the vicinity of. Ts, ps, as follows

cp: cop + Ap r B"r, + D"p * E"pz + Fpp

c : co + AA * B.r, * Dop I Eopz + Flp

Kr -  r0  *  A ; r+  B ; r ,  +  D*p*  E*pz  +  F ; rp  wherer=

Find the molar volume explicitly as a function of Z and
(To, P)-

T - T o l p = P - P o

P in the vicinity of

3.9-9. calculate the molar entropy s(7, po) for fixed pressure po and for tempera-
ture r in the vicinity of 7i. Assume that cp, a, and Kr are given in the viciniiy of
(To, Pi as in the preceding problem, and assume that s(Zo, po) is known.
3.9-10. By analogy with equations 3.70 and 3.71 show that for a paramagnetic
system

(aB"\  _ (  ar \
\7s  /  , . r , * -  \  o I  ) ' . r . ,

or, inverting,

" (E\  
:  r (  a I  \' \  a4 l  , . , . * :  

t  
\  a r  )  , , , , *

Interpret the physical meaning of this relationship.
3.9-11. By analogy with equations 3.70 and 3.71 show that for a paramagnetic
system

( e \  :  _ ( t p t
\  av  l r , , , r :  

- \  
u  ) r , r , *

3.9'12. The magnetic analogues of the molar heat capacities c" and cu are c, and
cr. Calculate c"(T,B",N) and cr(T,B",N) for ihe paramagnetic modil of
equation 3.66. (Note that no distinction need be made betweeni,., and cr,, for
this model, because of the absence of a dependence on volume in the fundamlntal
relation (3.66). Generally all four heat capacities exist and are distinct.)
3.9-13. The (isothermal) molar magnetic susceptibility is defined by

p o l  o I  \x = F\e+) ,
Show that the susceptibility of the paramagnetic model of equation 3.66 varies
inversely with the temperature, and evaluate ;1,, defined as ihe value of 1 for
T :  l K .
3.9-14. Calculate the adiabatic molar susceptibility

" 
= & (!!-\^" - . ly' \an") ,

as a function of z and B" for the paramagnetic model of equation 3.66.
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3.9-15. Calculate the isothermal and adiabatic molar susceptibilities (defined in
Problems 3.9-13 and 3.9-14) for the system with fundamental equation

r1  t to  12
U: ;  

t { "  
*Ncexp(2SlNR)

How are each of these related to the constant "21" appearing in the fundamental
relation?

3.9-16. Show that for the system of Problem 3.8-2

( _ q l  _ t a r \  / a s \  _ ( f . s \  _ ^
\E ) "  

:  
I  a r  l "  

:  
\ - 61 ) ' :  \ a4 ) , : '

and
t a B = \ : ( 9 L \ : ( a I \  / a / \  n
\ -a ,  t r  \  ds  / r  \  a r )  " . :  tas /4  

:  o

That is, there is no "coupling" between the thermal and magnetic properties.
What is the (atypical) feature of the equation of state of this system that leads to
these results?

3.%17. Calculate the heat transfer to a particular system if 1 mole is taken from
(To, Pi to (2Ts,2Po) along a straight line in the T-P plane. For this system it is
known that:

a(r, r): oo ' ( $ )i, ,nt 
"r" 

c0 is a constant
\  / o /  '

cr(T, r) : c9, aconstant

rcr(r, r) : K?, a constant

Hint: Use the relation (0s/0P)r: -(0u/07)p, analogous to equations 3.70
through 3.72 (md to be derived systematically in chapter 7), to establish that
dQ: Tds :  crdT - TuadP. .


